
http://www.econometricsociety.org/

Econometrica, Vol. 78, No. 5 (September, 2010), 1529–1568

IDENTIFICATION AND ESTIMATION OF A DISCRETE GAME OF
COMPLETE INFORMATION

PATRICK BAJARI
University of Minnesota, Minneapolis, MN 55455, U.S.A. and NBER

HAN HONG
Stanford University, Stanford, CA 94305, U.S.A.

STEPHEN P. RYAN
Massachusetts Institute of Technology, Cambridge, MA 02142, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded,
printed and reproduced only for educational or research purposes, including use in course
packs. No downloading or copying may be done for any commercial purpose without the
explicit permission of the Econometric Society. For such commercial purposes contact
the Office of the Econometric Society (contact information may be found at the website
http://www.econometricsociety.org or in the back cover of Econometrica). This statement must
be included on all copies of this Article that are made available electronically or in any other
format.

http://www.econometricsociety.org/


Econometrica, Vol. 78, No. 5 (September, 2010), 1529–1568

IDENTIFICATION AND ESTIMATION OF A DISCRETE GAME OF
COMPLETE INFORMATION

BY PATRICK BAJARI, HAN HONG, AND STEPHEN P. RYAN1

We discuss the identification and estimation of discrete games of complete informa-
tion. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of
a standard discrete choice model where utility depends on the actions of other players.
Using recent algorithms to compute all of the Nash equilibria to a game, we propose
simulation-based estimators for static, discrete games. We demonstrate that the model
is identified under weak functional form assumptions using exclusion restrictions and
an identification at infinity approach. Monte Carlo evidence demonstrates that the esti-
mator can perform well in moderately sized samples. As an application, we study entry
decisions by construction contractors to bid on highway projects in California. We find
that an equilibrium is more likely to be observed if it maximizes joint profits, has a
higher Nash product, uses mixed strategies, and is not Pareto dominated by another
equilibrium.

KEYWORDS: Complete information, discrete games, equilibrium selection mecha-
nism, mixed strategies, importance sampling.

1. INTRODUCTION

IN THIS PAPER, WE STUDY the identification and estimation of static, discrete
games of complete information. These are the canonical normal form games
of basic microeconomic theory, with a history dating back to the seminal work
of Nash (1951). Econometrically, a discrete game is a generalization of a stan-
dard discrete choice model, such as the conditional logit or multinomial pro-
bit, that allows an agent’s utility to depend on the actions of all other agents.
The utilities of all agents are common knowledge, and we assume that ob-
served outcomes are generated by a Nash equilibrium. Discrete game mod-
els been applied to diverse topics such as labor force participation (Bjorn
and Vuong (1984), Soetevent and Kooreman (2007)), entry (Bresnahan and
Reiss (1990, 1991), Berry (1992), and Jia (2008)), product differentiation (Seim
(2001), Mazzeo (2002)), technology choice (Ackerberg and Gowrisankaran
(2006), Ryan and Tucker (2009), Manuszak and Cohen (2004)), advertising
(Sweeting (2009)), long term care and family bargaining (Stern and Heide-
man (1999), Stern and Engers (2002)), analyst stock recommendations (Ba-
jari, Hong, Nekipelov, and Krainer (2004)), and production with discrete units
(Davis (2006)).
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proved the quality of the paper, seminar participants, and Victor Aguirregabiria, Lanier Benkard,
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tional Science Foundation Grants to Bajari (SES-0339328) and Hong (SES-0452143). We would
like to thank Denis Nekipelov and Tim Armstrong for research assistance. We thank Ted Turocy
for extending the Gambit software package to use homotopy solution methods at our request.
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A generic feature of normal form games is that, for a given set of payoffs,
there are often multiple Nash equilibria. Therefore, the model does not satisfy
the standard coherency condition of a one-to-one mapping between the model
primitives and outcomes. This is problematic for identification and estimation.
The literature has taken three approaches to deal with multiple Nash equilib-
ria. The first approach is to introduce an equilibrium selection mechanism that
specifies which equilibrium is picked as part of the econometric model. Exam-
ples include random equilibrium selection in Bjorn and Vuong (1984) and the
selection of an extremal equilibrium, as in Jia (2008). The second approach
is to restrict attention to a particular class of games, such as entry games,
and search for an estimator which allows for identification of payoff parame-
ters even if there are multiple equilibria. For example, Bresnahan and Reiss
(1990, 1991) and Berry (1992) studied models in which the number of firms
is unique even though there may be multiple Nash equilibria. They proposed
estimators in which the number of firms, rather than the entry decisions of in-
dividual agents, is treated as the dependent variable. A third method, proposed
by Tamer (2002), uses bounds to estimate an entry model. The bounds are de-
rived from the necessary conditions for pure strategy Nash equilibria, which
say that the entry decision of one agent must be a best response to the entry
decisions of other agents. Bounds estimation has also been used by Ciliberto
and Tamer (2009), Pakes, Porter, Ho, and Ishii (2005), and Andrews, Berry,
and Jia (2005). Berry and Tamer (2006) and Berry and Reiss (2007) surveyed
the econometric analysis of discrete games.

In this paper, we study identification and estimation of discrete complete
information games, explicitly allowing for both multiple and mixed strategy
equilibria. We propose a simulation-based estimator for these games. The
model primitives include player utilities and an equilibrium selection mech-
anism which determines the probability that a particular equilibrium of the
game is played. Using these primitives, we define a method of simulated mo-
ments estimator. We exploit recent algorithms that compute all of the equi-
libria for general discrete games (see McKelvey and McLennan (1996)). Find-
ing the entire set of Nash equilibria is computationally expensive in all except
the most simple games. For example, in a game of five players with two ac-
tions each, we have found that it may take up to 20 minutes of CPU time on
a 3.0 GHz single processor workstation to compute all Nash equilibria. There-
fore, we construct a smooth simulator for our model using an approach related
to work on importance sampling by Ackerberg (2004) and Keane and Wolpin
(1997, 2001). As we demonstrate in Section 3, this algorithm significantly re-
duces the computational burden of estimation and can be easily implemented
as a parallel process. In a Monte Carlo study, we find it takes less than a day of
CPU time to construct estimates and standard errors for our model. We pro-
vide Monte Carlo evidence that our estimator works well even with moderately
size samples. Finally, we apply our framework to study entry in an asymmet-
ric first-price auction model. We study the strategic decision of contractors to
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bid on highway repair projects in California, estimating both the payoffs to the
entry game and an equilibrium selection mechanism.

Our approach makes several contributions to the literature on estimating
static discrete games. First, our approach can be applied to any normal form
game of complete information. Several of the previous approaches in the lit-
erature restrict attention to specific classes of games, such as entry games or
games with strategic complementarities. Also, our estimator allows agents to
play mixed strategies. In Section 2, we demonstrate that unless strong restric-
tions are made on the underlying payoffs or on the support of the error terms,
a discrete game model predicts mixed strategy equilibrium with strictly posi-
tive probability. Some research argues that mixed strategy equilibria are more
likely to occur than pure strategies in some games. For example, in their study
of penalty kicks, Chiapporri, Groseclose, and Levitt (2002) found evidence in
favor of mixed strategies. Levin and Smith (2001) conducted an experimental
study of entry in auctions and found evidence in favor of the mixed strategy
entry equilibrium compared to the pure strategy entry equilibrium. In experi-
mental studies, El-Gamal and Grether (1995) and Shachat and Walker (2004)
both found that mixed strategy equilibria can be consistent with an unobserved
mixture of Bayesian learning by players. While mixed strategy equilibria can be
accounted for in a number of current estimation algorithms for the mean util-
ity parameters that work off the Nash equilibrium of a game, including Pakes,
Porter, Ho, and Ishii (2005), our estimator is more efficient and also accounts
for the equilibrium selection mechanism.

Second, we explicitly model and estimate the equilibrium selection mech-
anism. McKelvey and McLennan (1996, 1997) established that normal form
games generically have large numbers of Nash equilibria that increase at an
exponential rate as the number of players and/or actions grows. Estimating
the selection mechanism allows the researcher to simulate the model, which
is central to performing counterfactuals. This contrasts with the earlier litera-
ture on discrete games, which proposed estimators that do not specify which
equilibrium to select, making it impossible to simulate the model.

Understanding how equilibria are selected in actual plays of a game is also
a topic of independent interest. There is a large and influential literature on
refinements of the Nash equilibrium solution concept, such as trembling hand
perfection or stability. However, there may be a large number of Nash equilib-
ria which satisfy even the strongest refinements. Currently, there is no generally
accepted method in economic theory for selecting between alternative equilib-
ria to a normal form game. As a result, in some applications, the usefulness of
game theory may be limited because the economist is forced to either make
simplifying assumptions which guarantee a unique outcome or propose an ad
hoc rule for selecting between multiple equilibria. We contribute to the litera-
ture by taking an empirical approach to the problem of equilibrium selection.
We believe that an empirical approach may be useful given the lack of theory
for selecting between alternative equilibria in many applications.
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Our third contribution is to propose conditions for the semiparametric iden-
tification of both the structural parameters underlying the payoff functions and
the parameters of the equilibrium selection mechanism. We propose two sep-
arate sets of conditions. The first identification strategy is based on an identifi-
cation at infinity argument. Here we suppose that the structural utility parame-
ters can be defined as a linear index, and that the covariates have a sufficiently
rich support. We demonstrate that it is possible to identify the structural para-
meters of our model by examining choice behavior for sufficiently large values
of the covariates. The second strategy is based on finding an appropriate ex-
clusion restriction. For example, if there are covariates that shift the utility of
one player, but can be excluded from the utility of another player, then we
demonstrate that both the payoffs and the equilibrium selection mechanism
are locally identified. For example, in an entry game, we would search for a
covariate that shifts the profitability of one firm but that can be excluded from
the profits of all other firms. In oligopoly models, profits typically depend on a
firm’s costs, actions, and the actions of other firms in the market. The costs of
competing firms are typically excluded from profits. Therefore, if a researcher
can find firm-specific cost shifters, our approach demonstrates that the model
is identified. Firm-specific cost shifters are commonly used in empirical work.
For example, Jia (2008) and Holmes (2008) demonstrated that distance from
firm headquarters or distribution centers is a cost shifter for big box retailers
such as Walmart.

Both exclusion restrictions and index restrictions have been previously used
to identify econometric models of discrete games. Bresnahan and Reiss (1991)
and Tamer (2002) used these restrictions to identify latent utility parameters
in two-by-two games. Bresnahan and Reiss (1991) showed without any restric-
tions, all outcomes are observationally equivalent in games other than two-by-
two games. To the best of our knowledge, we are the first investigators to use
these restrictions to identify both payoffs and the equilibrium selection mech-
anism in general normal form games.

Finally, we consider an application to entry in auctions, where researchers
have not formally treated the possibility of multiple equilibria to the auction
game (see Bajari and Hortacsu (2003) and Athey, Levin, and Seira (2008)).
We construct a data set of bidder entry into procurement auctions for highway
paving projects in California. This application fits our modeling assumptions
well. First, contractors’ entry decisions can reasonably be modeled as a simul-
taneous move game. Contractors are prohibited by antitrust law from commu-
nicating before submitting their bids, which is enforced by the threat of both
civil and criminal penalties. Second, the dependent variable in our model is the
decision to bid for a single, precisely specified construction project with a fixed
duration. In our application, we find that backlog and other dynamic factors
are fairly minor in explaining bidding behavior. Thus, we argue that our entry
decision can be reasonably modeled as static, isolated instances of the entry
game. In other applications, entry decisions will involve competing in a market
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for an indeterminate period of time, which suggests that allowing for a dynamic
model is important.

The focus of our application is the estimation of the equilibrium selection
mechanism. We allow the probability that a particular equilibrium is observed
to depend upon whether the equilibrium is in pure strategies, maximizes joint
profits, has the highest Nash product among pure strategies, and whether it
is dominated. To the best of our knowledge, this is the first empirical test of
alternative criteria for equilibrium selection in a normal form game.

2. THE MODEL

The model is a simultaneous move game of complete information, com-
monly referred to as a normal form game. There are i = 1� � � � �N players, each
with a finite set of actions Ai. Define A = ×iAi and let a = (a1� � � � � aN) de-
note a generic element of A. Player i’s von Neumann–Morgenstern (vNM)
utility is a map ui :A → R, where R is the real line. Let πi denote a mixed
strategy over Ai� A Nash equilibrium is a vector π = (π1� � � � �πN) such that
each agent’s mixed strategy is a best response.

Following Bresnahan and Reiss (1990, 1991), assume that the vNM utility of
player i when the action profile of all players is a can be written as

ui(a�x�θ1� εi)= fi(x�a;θ1)+ εi(a)�(1)

We will sometimes abuse notation and write ui(a) instead of ui(a�x�θ1� εi).
In Equation (1), i’s vNM utility from action a, ui(a), is the sum of two terms.
The first term is a function fi(a�x;θ1), which depends on a, the vector of ac-
tions taken by all of the players, covariates x, and parameters θ1. The second
term is εi(a), a random preference shock. The term εi(a) reflects information
about utility that is common knowledge to the players, but not observed by the
econometrician. Note that the preference shocks depend on the entire vector
of actions a, not just the actions taken by player i. In our model, the εi(a) are
assumed to be independent and identically distributed (i.i.d.) with a density
gi(εi(a)|θ2) and joint distribution g(ε|θ2) = ∏

i

∏
a∈A gi(εi(a)|θ2). In much of

the literature, a different assumption is used, where stochastic shocks are only
a function of player i’s own actions. We could easily modify our estimator to
allow the εi(a) to depend only on the actions of i or to drop the independence
assumption, for example, by including random effects to account for unob-
served heterogeneity. We discuss the stochastic assumption of the error terms
in more detail in Section 4 on identification.

Let ui = (ui(a))a∈A denote the vector of utilities for player i and let u =
(u1� � � � � uN). Given that there may be more than one equilibrium for a par-
ticular u, let E(u) denote the set of Nash equilibria. We now introduce a
mechanism for how a particular equilibrium is selected in the data. We let
λ(π; E(u)�β) denote the probability that equilibrium π ∈ E(u) is selected,



1534 P. BAJARI, H. HONG, AND S. P. RYAN

where β is a vector of parameters. For λ to generate a well defined distrib-
ution, it must be the case that, for all u and β,∑

π∈E(u)

λ(π; E(u)�β) = 1�

Economic theory and the specifics of a particular application may suggest a
potential model for λ. For example, the researcher may hypothesize that the
probability that an equilibrium is played may depend on whether it is in pure
strategies, is Pareto dominated, or maximizes the sum of the utilities of players
in the game. Given π ∈ E(u), define the vector y(π�u) as

y1(π�u) =
{

1 if π is a pure strategy equilibrium,
0 otherwise,

(2)

y2(π�u) =
{

1 if π is Pareto dominated,
0 otherwise,

(3)

y3(π�u) =
⎧⎨⎩1 if

(∑
i

∑
a

π(a)ui(a)

)
− û= 0,

0 otherwise,

(4)

where π(a)= ∏
i πi(ai) and û= maxπ′∈E(u){∑i

∑
a π

′(a)ui(a)}.
A parsimonious, parametric model of λ is then

λ(π; E(u)�β) = exp(β · y(π�u))∑
π′∈E(u)

exp(β · y(π ′�u))
�(5)

Note that in the denominator in (5) the sum is taken over all π ′ ∈ E(u). If β1

is greater than zero, this means that a pure strategy equilibrium is more likely
to be selected, all else held constant. This assumption is implicitly made in the
bounds estimation literature on games, which assumes that only pure strategy
equilibria are observed. If β2 < 0� then Pareto dominated equilibria are less
likely to be observed. In economic theory, researchers frequently rule out such
an equilibrium as a prior implausible. Finally, if β3 > 0, then the equilibrium
which maximizes joint payoffs is more likely to be observed and the equilibria
which results in much lower total utility is less likely. This assumption is some-
times used in the theoretical literature on collusion or the empirical literature
on entry.

A unique aspect of including λ in our model is that we explicitly estimate
how equilibrium is selected rather than impose an ad hoc rule for selecting an
equilibrium. While there is a large literature on refinements to normal form
games, even the strongest refinements do not rule out enough equilibria to
make most discrete games give a unique prediction. Our framework allows the
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researcher to treat equilibrium selection as an empirical problem. By estimat-
ing β, we can find which equilibrium best matches the outcomes observed in
the data.

Combining the elements of the model together, we obtain the following ex-
pression for the probability of observing a specific action profile in a play of
the game:

P(a|x� f�λ) =
∫ { ∑

π∈E(u(f�ε)�x)

λ
(
π; E(u(f� ε)�x)

)( N∏
i=1

π(ai)

)}
g(ε)dε�(6)

Holding a draw of the error terms fixed, the utility of the agents can be written
as

u(x�θ� ε) = fi(a�x;θ1)+ εi(a)�

This defines the payoffs in the normal form game. We can then compute the
equilibrium set E(u(f� ε)�x), which appears in the index of the summation�
Next, we sum over all of the π ∈ E(u(f�x� ε�θ1)) which are elements of the
equilibrium set. For a particular equilibrium,

∏
N
i=1π(ai) is the probability that a

is observed. We weight these terms by λ(π; E(u(f�x� ε�θ1))�β), the probabil-
ity that a particular equilibrium is observed.

To evaluate Equation (6), it is necessary to compute the set E(u). McKelvey
and McLennan (1996) surveyed the available algorithms in detail. The free,
publicly available software package Gambit has routines that can be used to
compute the set E(u) using these methods.2 Finding all of the equilibria to a
game is not a polynomial time computable problem. However, the available
algorithms are fairly efficient at computing E(u) for games of moderate size.
Readers interested in the details of the algorithms are referred to McKelvey
and McLennan (1996). In the next sections, we shall take the ability to compute
E(u) as given. In reality, the computational burden for finding E(u) remains
large for moderate to large number of players and actions, and increases expo-
nentially with the number of players and actions. For example, Turocy (2008)
tabulated average run times to compute all equilibria for various combinations
of players and actions. The Gambit routine that we use computes both pure
strategy and mixed strategy Nash equilibria by solving systems of polynomial
equations and inequalities. Inequality solutions to the polynomial system are
searched by enumeration. Equality solutions to the polynomial system, which
correspond to mixed strategy equilibria, are searched through the use of a ho-
motopy method.

2Gambit can be downloaded on the web from http://econweb.tamu.edu/gambit/.

http://econweb.tamu.edu/gambit/
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2.1. Discussion

2.1.1. Mixed Strategies

Allowing for mixed strategies in our framework is necessary if the error term
has large enough support. As a result, our estimator would be ill-defined if we
restricted attention to pure strategy equilibria. Consider the well known game
of matching pennies, illustrated in the following table:

MATCHING PENNIES

H T

H (1�−1) (−1�1)
T (−1�1) (1�−1)

In matching pennies, each player simultaneously chooses heads (H) or
tails (T). If the choice of strategies match, then player 1 receives utility of 1
and player 2 receives a utility of −1. If the strategies differ, the payoffs are
reversed. The only equilibrium of this game is in mixed strategies with each
player placing probability 1/2 on H and 1/2 on T. Consider games that have
payoffs in a neighborhood of matching pennies by perturbing the payoffs as
follows:

PERTURBED GAME

H T

H (1 + ε1(H�H), −1 + ε2(H�H)) (−1 + ε1(H�T), 1 + ε2(H�T))
T (−1 + ε1(T�H), 1 + ε2(T�H)) (1 + ε1(T�T), −1 + ε2(T�T))

For sufficiently small, but still nonzero, values of ε it can easily be verified
that there is no pure strategy equilibrium to this game. For example, (H�H)
cannot be a pure strategy equilibrium since player 2 would have an incentive
to deviate and play T. Thus, there is an open set of payoffs for which discrete
games have an equilibrium only in mixed strategies. As a result, our model
must accommodate the possibility of equilibrium in mixed strategies. If we only
allowed for pure strategies, the model would have no equilibrium with proba-
bility greater than zero and would not be well defined. It is straightforward to
show that this result can be generalized to games with more players and more
strategies.

Previous research on complete information games generally limits atten-
tion to entry games (see Bresnahan and Reiss (1990, 1991), Berry (1992), and
Tamer (2002)). These papers carefully restrict payoffs to guarantee the exis-
tence of a pure strategy equilibrium. Thus, the estimators proposed in these
papers, which restrict attention to pure strategies, do not need to accommodate
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mixed strategies. However, since we are interested in a more general specifica-
tion of payoffs, we must allow for mixed strategies.

2.1.2. Equilibrium Selection

A unique aspect of our framework is that we include the equilibrium selec-
tion mechanism, λ, in our econometric model. The inclusion of λ is useful for
two reasons. First, there are frequently multiple Nash equilibria to a normal
form game. Equilibrium selection is an extremely important question in the-
oretical economics, but there is very little empirical work in this area outside
of experiments. Using our modeling framework, we are able to empirically in-
vestigate equilibrium selection, which is important given that economic theory
may provide little guidance about which equilibrium to select.

Second, including λ specifies the probability of each equilibrium and, there-
fore, allows us to simulate the model. This is necessary for both the construc-
tion of our estimator in the next section and for counterfactual analysis. The
bounds approach to games has the advantage of remaining agnostic about λ,
other than assuming that all equilibria are in pure strategies. However, in the
bounds approach, the researcher estimates only fi(a�x;θ1). This approach typ-
ically does not allow the researcher to estimate g(ε|θ2) and λ. As a result,
the researcher lacks the infomation to compute P(a|x� f�λ) as a function of
θ and β. Therefore, the researcher cannot simulate the model, which greatly
limits the scope of applications that can be considered.

Consider the pure coordination game below, where player 1 chooses {T�B},
top or bottom, and player 2 chooses {L�R}, left or right:

COORDINATION GAME

L R

T (1�1) (0�0)
B (0�0) (1�1)

This game has three equilibria (T�L), (B�R), and a mixed strategy equilib-
rium where each player plays each strategy with probability 1/2. Economic
theory provides little guidance as to which equilibrium is most likely in this
game. It does not seem possible to use theory to predict whether the (T�L) or
(B�R) equilibrium is most plausible, since equilibria generate the same pay-
offs and only differ in the names assigned to the strategies. The inability of
economic theory to select a unique equilibrium is not specific to this example.
Many games generate multiple equilibria that satisfy the best known refine-
ments in the theoretical literature.

Our approach allows for an empirical approach to equilibrium selection.
Suppose that the payoff matrix is known and that the economist has access
to data on repeated plays of this game. With a sufficiently large number of
observations, the economist will be able to precisely estimate the probability
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of observing the strategy pairs (T�L), (T�R), (B�L), and (B�R). In this ex-
ample, knowing λ requires the economist to specify the probability with which
each of the three equilibria is played. Since the economist has knowledge of
four probabilities, three of which are linearly independent, it follows that λ
is identified. Therefore, while economic theory cannot be used to determine
equilibrium selection, our simple example suggests that an empirical approach
to this problem may be more fruitful.

In our identification section (Section 4), we investigate conditions under
which both the equilibrium selection mechanism and the payoff matrix can
be simultaneously identified. We demonstrate, similar to Bresnahan and Reiss
(1991), that, in general, our problem is underidentified. However, we also de-
scribe two sets of sufficient conditions for identification that may be useful in
some applications.

2.1.3. Comparison With Incomplete Information Games

An alternative approach used in the applied literature is to assume that the
error terms depend only on player i’s own actions and are private informa-
tion. Incomplete information games are attractive for empirical work since it
is often possible to estimate these models using a simple two-step procedure.3
However, discrete games with incomplete information have a very different
equilibrium structure than games with complete information. In a coordina-
tion game, Bajari, Hong, Krainer, and Nekipelov (2006) used numerical meth-
ods to show that the number of equilibria decreases as the number of players
in the game increases. In a complete information game, by comparison, the av-
erage number of Nash equilibria will increase as players are added to the game
(see McKelvey and McLennan (1996)). Thus, the assumption of incomplete
information refines the equilibrium set. The properties of this refinement are
not completely understood and are an active area of research; see Brock and
Durlauf (2001), McKelvey and Palfrey (1995), and Sannikov (2007). We be-
lieve that evaluating the merits of both games with complete and incomplete
information is an important topic for future research.4

2.2. Examples of Discrete Games

The model that we propose is quite general and could be applied to many
discrete games considered in the literature. We discuss three examples: entry,
technology adoption with network effects, and peer effects. The first example is
static entry into a market (see Bresnahan and Reiss (1990, 1991), Berry (1992),
Tamer (2002), Ciliberto and Tamer (2009), and Manuszak and Cohen (2004)).

3See Pesendorfer and Schmidt-Dengler (2003), Aguirregabiria and Mira (2007), Brock and
Durlauf (2001), Sweeting (2009), Bajari, Hong, Krainer, and Nekipelov (2006), and Bajari,
Benkard, and Levin (2007).

4In addition, it may be easier to compute the set of all equilibria in games of complete infor-
mation. See Bajari, Hong, Nekipelov, and Krainer (2004) for a discussion.
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In applications of entry games, the economist observes a cross section of mar-
kets and the players correspond to a set of potential entrants. The potential
entrants simultaneously choose whether to enter: ai = 1 denotes a decision by
i to enter the market and ai = 0 denotes a decision not to enter the market. In
empirical work, the profit function, fi, typically takes the form

fi =
⎧⎨⎩θ1 · x+ δ

∑
j �=i

1{aj = 1} if ai = 1,

0 if ai = 0.
(7)

In Equation (7) the mean utility from not entering is set equal to zero.5 The
covariates x are variables which influence the profitability of entering a market,
such as the number of consumers in the market, average income, and market-
specific cost variables. The parameter δ measures the influence entry by other
firms on firm i’s profits. If profits decrease from having another firm enter the
market, then δ < 0. The error εi(a) captures shocks to the profitability of entry
that are commonly observed by all firms in the market, but are unobserved by
the econometrician. In applied work, it might be desirable to include a market-
specific random effect in εi(a) to account for common shocks to profitability.

A second example is technology adoption in the presence of network ef-
fects, as in Ackerberg and Gowrisankaran (2006), who modeled the decision by
banks in spatially separated markets to adopt the Automated Clearing House
(ACH) payment system. The players in the game are the existing banks in some
market. Let ai = 1 denote a decision to adopt ACH and let ai = 0 denote non-
adoption. A priori, network effects are likely since the customers of bank i are
able to transfer funds to customers of bank j if both banks adopt ACH. An
empirical model of network effects could take the form

fi =
⎧⎨⎩θ1 · xi + δ

∑
j �=i

1{aj = 1} · cj · ci if ai =1,

0 if ai = 0.
(8)

In Equation (8), xi denotes some factors which influence the costs and benefits
to adoption by firm i, such as the number of customers of bank i and their
characteristics (e.g., large corporate or government agencies commonly use
ACH to make automatic payroll deposits). The term ci is the current number
of customers of bank i. The term δ

∑
j �=i 1{aj = 1} · cj · ci captures the network

effect. The marginal benefit of i’s adoption depends on ci · cj .
A third example is peer effects, as in Manski (1993) and Brock and Durlauf

(2001, 2006). A peer effect connotes a situation where there is a benefit from
conforming to the average or norm behavior. For example, consider the deci-
sion by a high school senior to take calculus. The players in the game are all of

5We formally discuss this normalization in Section 4 on identification.
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the students who could potentially take the class. Let ai = 1 if student i decides
to take calculus and ai = 0 otherwise. The utility of student i is

fi =
⎧⎨⎩θ1 · xi + δ

∑
j �=i

1{aj = 1} · sj if ai = 1,

0 if ai = 0.
(9)

In Equation (9), the covariates xi could include terms that shift a student’s
incentives to take calculus, such as the educational status of her parents. The
term si denotes the score of student i on a standardized achievement test and
is commonly used to proxy for ability. If δ > 0, the term δ

∑
j �=i 1{aj = 1} · sj

captures a positive peer effect, that is, the utility to student i from taking calcu-
lus is an increasing function of the number of other students who take calculus,
interacted with the test scores of student i’s peers.

The modeling framework we propose could be applied beyond these three
examples. In principal, this framework could be used to model any discrete
choice where (i) the payoffs of agents are interdependent, (ii) decisions are
made simultaneously, and (iii) there is complete information. If the number
of players or actions is very large, our estimator may not be computation-
ally feasible due to the computational cost of solving for the entire equilib-
rium set. However, in the next section we describe an estimator which reduces
the computational burden of estimation through the use of a parallel algo-
rithm.

3. SIMULATION

Next, we propose a computationally efficient method of simulated mo-
ments (MSM) estimator for θ and β, the parameters governing agents’ pay-
offs and the equilibrium selection mechanism, respectively. As in Section 2, let
P(a|x�θ�β) denote the probability that a vector of strategies, a= (a1� � � � � aN)�
is observed conditional on x, θ, and β. MSM estimation requires an accurate
and computationally efficient method for simulating P(a|x�θ�β), which can
be written as

P(a|x�θ�β)(10)

=
∫ { ∑

π∈E(u(x�θ�ε))

λ
(
π; E(u(x�θ1� ε))�β

)( N∏
i=1

πi(ai)

)}
g(ε|θ2)dε�

In principal, this integral could be simulated using a straightforward Monte
Carlo procedure. First, pseudorandom values of the random preference shocks
ε = (ε1� � � � � εN) are drawn from the distribution g(ε|θ2). Second, for each
pseudorandom error draw ε= (ε1� � � � � εN), utilities are computed using Equa-
tion (1); we denote the utilities as u(x�θ� ε) to emphasize their dependence on
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the parameters, covariates, and preference shocks. Third, the equilibrium set
E(u(x�θ� ε)) is computed. Finally, the probability that an event is observed is
computed by summing over the equilibria π ∈ E and computing (i) λ(π), the
probability that the equilibrium π is selected, and (ii)

∏N

i=1 πi(ai), the proba-
bility that a is observed given π. By averaging over a large number of draws
of ε, the economist could precisely simulate P(a|x�θ�β).

Unfortunately, this straightforward approach is not practical for applied
work in all but the simplest games. The reason is that during estimation,
P(a|x�θ�β) must be simulated for each candidate parameter value θ�β and
each vector x that appears in the data. The equilibrium set E(u(x�θ� ε)) there-
fore must be computed a large number of times. We have found that it may
take up to 20 minutes to compute E(u(x�θ� ε)) for a 5-player game with two
strategies. As a result, the computational costs of this straightforward approach
will often be prohibitive in applied work.

To lower the computational burden of simulating P(a|x�θ�β)� we borrow
from Keane and Wolpin (1997), Keane and Wolpin (2001), and Ackerberg
(2004). First, we change the variable of integration in Equation (10) from ε
to u. Let h(u|θ�x) denote the density u, conditional on θ and x. In many mod-
els, this density is trivial to compute and simulate. For instance, suppose that
the preference shocks εi(a) are i.i.d. standard normal with density φ(·). Then
the density is

h(u|θ�x) =
∏
i

∏
a∈A

φ(ui(a)− fi(x�a;θ1)|0�σ)�

which can be computed easily using standard programming packages.
If we change the variable of integration from ε to u, then Equation (10)

becomes

P(a|x�θ�β) =
∫ { ∑

π∈E(u)

λ(π; E(u)�β)

(
N∏
i=1

πi(ai)

)}
h(u|θ�x)du�(11)

Our simulator uses importance sampling; therefore, we rewrite Equation (11)
as

P(a|x�θ�β)

=
∫ { ∑

π∈E(u)

λ(π; E(u)�β)

(
N∏
i=1

πi(ai)

)}
h(u|θ�x)
q(u|x) q(u|x)du�

where q(u|x) is the importance density. For a given value of x, we draw a
pseudorandom sequence u(s) = (u(s)

1 � � � � � u(s)
N )� s = 1� � � � � S, of random util-

ities from the importance density q(u|x). Each u(s)
i is a vector of simulated

utility indexes for all the possible action profiles for player i. We then compute
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the equilibrium sets E(u(s)), a step which can be performed in parallel across
several CPU’s.

We can then simulate P(a|x�θ�β) as

P̂(a|x�θ�β)(12)

= 1
S

S∑
s=1

{ ∑
π∈E(u(s))

λ
(
π; E

(
u(s)

)
�β

)( N∏
i=1

πi(ai)

)}
h(u(s)|θ�x)
q(u(s)|x) �

This simulator has three practical advantages for applied work. First, P̂(a|x�
θ�β) will be an unbiased estimator of P(a|x�θ�β)� Second, given the simula-
tion draws u(s), the parameters θ and β do not enter into the expression for the
equilibrium set E(u(s)). Therefore, when we change the parameter values, it is
not necessary to recompute the equilibrium set E(u(s)). Exploiting this prop-
erty will drastically reduce the time required to compute our estimator. Third,
this simulator is a smooth function of the underlying parameters. As a result,
the minimization of our MSM objective function will be numerically well be-
haved.6

The theory of importance sampling proves that P̂(a|x�θ�β) is a smooth and
unbiased simulator for any choice of the importance density q(u(s)|x) that has
sufficiently large support� However, as a practical matter, it is important that
the ratio h(u(s)|θ�x)

q(u(s)|x) does not become too large. To ensure this, we need to make
sure that the tails of the importance density q(u(s)|x) are not too thin in a
neighborhood of the parameter that minimizes our MSM estimator. In our ap-
plied work, we have often constructed the importance density q(u|x) by first
estimating a version of the model in which the error terms ε= (ε1� � � � � εN) are
private information instead of common knowledge. We then use the method
proposed in Bajari, Hong, Nekipelov, and Krainer (2004) to estimate the pa-
rameters of the private information version of the model. This is an extremely
simple estimation problem and can be quickly programmed using a standard
statistical package such as STATA. The importance density q(u|x) is then set
equal to the distribution of utilities conditional on x in the private information
version of the game.7

6We note that while we follow Keane and Wolpin (1997, 2001) and Ackerberg (2004) in con-
structing the importance sampler, its use in normal form game estimation is new. In addition,
there is also a subtle difference between our use of importance sampling and its use by previous
authors. The dynamic discrete choice model in the earlier papers requires a complete random co-
efficient specification to allow the importance sampler to reduce the computational burden. The
complete information normal form game has the interesting feature that it does not require a ran-
dom coefficient specification for the importance sampler to save on the computational burden of
the estimator.

7This estimator can be performed in two stages. In the first stage, the economist flexibly esti-
mates the choice probabilities P(a|x) using standard methods. In the second stage, the economist
assumes that these estimated choice probabilities represent the agent’s equilibrium expectations.
These choice probabilities are then substituted into the utility function.
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3.1. The Estimator

The economist observes a sequence (at� xt) of actions and covariates, t =
1� � � � � T . Equation (12) can be used to form a maximum simulated likelihood
estimator (MSL) for these observations. As is well known, MSL is biased for
any fixed number of simulations. The number of simulations has to increase
to infinity as the sample size increases so that MSL is consistent. To obtain√
T consistent estimates with an asymptotic distribution centered at zero, one

needs to increase the number of draws S so that S√
T

→ ∞. If S√
T

→ c for a
constant c that is bounded away from zero, the MLS estimator is still

√
T con-

sistent, but the asymptotic distribution has a bias that is different from zero.8
Alternatively, one can estimate the parameters using MSM. An advantage

of MSM is that it generates an unbiased and consistent estimator for a fixed
value of S. To form the MSM estimator, enumerate the elements of A from
k = {1� � � � �#A}. Note that because the probabilities of all of the elements of
a ∈ A must sum to 1, one of these probabilities will be linearly dependent on
the others, so there are effectively #A − 1 conditional moments. Let wk(x)
be a vector of weight functions with dimension larger than the number of pa-
rameters for each k and let 1(at = k) denote the indicator function that the
tth vector of actions is equal to k. The function P(k|x�θ�β) denotes the prob-
ability that the observed vector of actions is k given x and the parameters θ
and β� This probability is defined in Equation (10). At the true parameters of
the data-generating process, the predicted probability of each action equals its
empirical probability for each action k:

E[1(at = k)− P(k|x�θ�β)]wk(x) = 0�

Using the sample counterpart of the above expectation, we form a vector of
#A− 1 moments, where the kth element is defined by

mk�T (θ�β) = 1
T

T∑
t=1

[1(at = k)− P(k|xt� θ�β)]wk(xt)�

In practice, P(k|xt� θ�β) is evaluated by simulation using the importance sam-
pler in Equation (12). For each xt , we draw a vector of S simulations u(s)

t , where
s = {1� � � � � S}, from the importance density q(u|x). We assume that the simu-
lation draws u(s)

t are independent over both t and s, and are independent of
the data. The kth moment condition is then replaced by its simulation analog:

m̂k�T (θ�β) = 1
T

T∑
t=1

[1(at = k)− P̂(k|xt� θ�β)]wk(xt)�

8In practice, we have found that MSL can be useful for finding starting values for MSM. In
our experience, the likelihood function is more concave around the maximum than in the MSM
estimator.
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Then for a positive definite weighting matrix WT , the MSM estimator is

(θ̂� β̂) = arg min
(θ�β)

m̂T (θ�β)
′ ×WT × m̂T (θ�β)�(13)

The asymptotic theory for estimating discrete choice models using MSL and
MSM is well developed. See McFadden (1989), Pakes and Pollard (1989), or
Hajivassiliou and Ruud (1994) for detailed discussions.

4. IDENTIFICATION

Next, we develop two approaches to identification. To be clear, we are inter-
ested in conditions under which it is possible to recover the unknown primi-
tives of the model in Section 2: f (a�x) and λ(x). We consider the identifica-
tion of f (a�x) and λ(x) as general functions of x. Therefore, we drop their
dependence on θ and β� In the first approach, we provide sufficient condi-
tions to identify payoffs and the selection mechanism as the support of the
covariates grows large. The second approach considers identification based on
agent-specific payoff shifters. We first discuss two necessary restrictions on the
data-generating process that are familiar from the discrete choice literature.
We also present some negative results on identification before discussing the
details of our approaches.

The results in Section 4.3 show that, in general, the maximum number of
equilibria can be much larger than the number of moment conditions #A− 1,
which means that the equilibrium selection mechanism cannot be identified
for a certain range of the distribution of the random utility ui(x� ε). This sec-
tion also justifies more restrictive forms—parametric or semiparametric—of
the equilibrium selection mechanism. Appendix B.4 in the Supplemental Ma-
terial (Bajari, Hong, and Ryan (2010)) provides more details.

4.1. Scale and Location Normalizations

ASSUMPTION 1: The payoffs of one action for each agent are fixed at a
known constant.

This restriction is similar to normalizing the mean utility from the outside
good to a constant, usually zero, in a standard discrete choice model. It is clear
from the definition of a Nash equilibrium that adding a constant to all deter-
ministic payoffs does not perturb the set of equilibria, so a location normal-
ization is necessary. A scale normalization is also necessary, as multiplying all
deterministic payoffs by a positive constant does not alter the set of Nash equi-
libria either. This restriction is subsumed in the following assumption about
the distribution of the error terms.

ASSUMPTION 2: The joint distribution of ε = (εi(a)) is independent and
known to all agents and the econometrician.
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Assumption 2 allows εi(a) to be any known joint parametric distribution. For
expositional clarity, we assume that it has a standard normal distribution. Even
in the simplest discrete choice models, it is not possible to identify both fi(a�x)
and the joint distribution of the εi(a) nonparametrically. Consider a standard
binary choice model where the dependent variable is 1 if the index u(x)+ ε is
greater than zero, that is,

y = 1(u(x)+ ε > 0)�(14)

All the population information about this model is contained in the conditional
probability P(y = 1|x)� the probability that the dependent variable is equal to 1
given the covariates x. If the cumulative distribution function (CDF) of ε is G,
then Equation (14) implies that

P(y = 1|x)=G(u(x))�(15)

Obviously, only the composition of G(u(x)) can be identified. It is, therefore,
necessary to make parametric assumptions on one part (e.g., G or u) to identify
the other part. For instance, if G is the standard normal CDF, we can perfectly
rationalize the observed moments in Equation (15) by setting u(x) to the in-
verse CDF evaluated at P(y = 1|x). Therefore, we will assume that the error
terms are independently and normally distributed.

4.2. Difficulty of Nonparametric Identification

A model is said to be identified if the model primitives can be recovered
given the probability distributions the economist can observe. In a normal form
game, the available population probabilities are P(a|x) for a ∈ A. Again, the
primitives we wish to identify are f (a�x) and λ(x).

We can generalize Equation (10) by writing P(a|x) in a way that does not
hinge on the specific parametric forms implicitly assumed in Section 2:

P(a|x� f�λ)(16)

=
∫ { ∑

π∈E(u(f�ε)�x)

λ
(
π; E(u(f� ε)�x)

)( N∏
i=1

π(ai)

)}
g(ε)dε�

In Equation (16), we write the vNM utilities as u(f� ε) to remind ourselves that
they are a sum of the mean utilities f (a�x) and the shocks ε. Holding x fixed,
we can view Equation (16) as a finite number of equations that depend on the
finite number of parameters, f (a�x) and λ(x), where λ(x) implicitly defines
the vector of equilibrium selection probabilities for all π in E . Denote this
system as P(a|x) =H(f(a�x)�λ(x)), where H is the map implicitly defined by
Equation (16) across all the action profiles a. We drop one choice probability
for each player when writing H; not doing so introduces a linear dependence
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between the rows of this system, since choice probabilities sum to 1. In what
follows, we invoke the following assumption:

ASSUMPTION 3: The map H is continuously differentiable. The Jacobian
formed by differentiating H with respect to the parameter vectors f (a�x) and
λ(x) is denoted by DHf�λ(x).

Given the probabilities P(a|x), suppose that f 0(a�x) and λ0(x) satisfy
Equation (16). If no other pairs of f (a�x) and λ(x) also satisfy (16),
then (f 0(a�x)�λ0(x)) is said to be globally identified. On the other hand,
(f 0(a�x)�λ0(x)) is said to be locally identified if there exists an open neighbor-
hood Nx of (f 0(a�x)�λ0(x)) such that there is no other vector (f̃ (a�x)� λ̃(x)) ∈
Nx� (f̃ (a�x)� λ̃(x)) �= (f 0(a�x)�λ0(x)), that also satisfies Equation (16).
P(a|x) is analogous to the reduced form parameters and (f (a�x)�λ(x)) is

analogous to the structural parameters in the terminologies of Rothenberg
(1971) and Gale and Nikaido (1965). The vector (f (a�x)�λ(x)) is called a
regular point of DHf�λ(x) if the rank of DHf�λ(x) is constant in a neighbor-
hood of (f (a�x)�λ(x)). However, H is usually highly nonlinear. Theorem 6
in Rothenberg (1971) states that a sufficient condition for (f 0(a�x)�λ0(x)) to
be locally identified is that the rank of DHf�λ(x) is equal to the total number
of parameters in (f (a�x)�λ(x)) at (f 0(a�x)�λ0(x)). Sufficient conditions for
global identification are more difficult. Gale and Nikaido (1965) required the
existence of a square submatrix W of DHf�λ(x) with dimension (f (a�x)�λ(x)),
such that W has a positive determinant and that W + W ′ is positive definitive
throughout the parameter space. While we can possibly check the rank identifi-
cation condition of DHf�λ(x) for low dimension two-by-two games, it is difficult
to do so for general games. At a minimum, this would require us to character-
ize the set of all equilibria that can be reached. This can be difficult in games
with multiple players and strategies.

A necessary condition for the full rank of DHf�λ(x) is the order condition,
which requires that the number of P(a|x) in forming DHf�λ(x) is larger than
the number of parameters in (f (a�x)�λ(x)). The order condition is easier to
investigate in general. To fix ideas in what follows, consider the simple game in
Table I. Note that for each player, we have normalized the payoff of one action
to zero.

TABLE I

EXAMPLE OF TWO-BY-TWO GAME

L R

T (0�0) (0� f2(TR�x)+ ε2(TR))
B (f1(BL�x)+ ε1(BL)�0) (f1(BR�x)+ ε1(BR)� f2(BR�x)+ ε2(BR))
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We first note that even if the selection mechanism λ is known, a two-by-
two game has more utility parameters that need to be identified than the
number of moment conditions that can be observed in the data. Holding
a given realization of x fixed, the econometrician observes four conditional
moments: P(TL|x)�P(TR|x)�P(BL|x), and P(BR|x). However, because the
probability of the actions must sum to 1, there are effectively three moments
that the econometrician can use. Meanwhile, we have four utility parame-
ters, f1(BL�x)� f1(BR�x)� f2(TR�x), and f2(BR�x), that need to be identified.
Since there are more free parameters than moments, the model is unidentified.
Note that variation in x does not help to reduce the total number of parame-
ters that need to be identified because we place no restrictions on how mean
utility varies with x.

The result above can easily be generalized to generic games. Consider a
game with N players and #Ai strategies for player i. Holding x fixed, the
total number of mean utility parameters fi(a�x) is equal to N · ∏

i #Ai −∑
i

∏
j �=i #Aj� This is the cardinality of the number of strategies times the num-

ber of players minus the required normalizations. The number of moments
that the economist can observe, conditional on x, is only

∏
i #Ai − 1� If each

player has at least two strategies, then for each given x, the difference between
the number of utility parameters, fi� to estimate and the number of available
moment conditions is bounded from below by(

(N − 1)− N

2

)∏
i

#Ai + 1 ≥ 0�

Therefore, the model is underidentified.

4.3. Identification at Infinity

The first approach we propose is based on a strategy of identification at infin-
ity. Suppose the covariates have full support and the mean utilities are defined
by a linear index of the covariates with suitable sign restrictions on the coef-
ficients. That is, fi(a�x) = xa

i β
a
i for all ai for which fi(a�x) is not normalized

to zero. Identification at infinity strategies are often needed for linear index
models of discrete outcomes, for example, Manski (1988), Heckman (1990),
and Tamer (2002). We demonstrate that this approach can also be applied to
discrete games.

The identification strategy involves two steps. In the first step, using argu-
ments similar to Tamer (2002), we identify the mean utilities by focusing on a
path of the covariate values that gives a unique equilibrium with probability
close to 1. We then perturb the covariates locally to identify the utility para-
meters, all of which enter fi linearly. In the second step, under an invariance
assumption on the equilibrium selection mechanism, we identify the equilib-
rium selection probabilities from the observable choice probabilities.
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As a simple example, consider the two-by-two game in Table I, where
ε1(TL) = ε1(TR) = ε2(TL) = ε2(BL) = 0. Assume that X = {x1�x2} has non-
degenerate full support on R

2. Since payoffs are defined as a linear index, it
is possible to find a sufficiently large value of x2 such that player 2 will play
L with probability approaching 1. For x2 sufficiently large, the probability that
player 1 chooses B is P(B|x) = P(f1(BL�x1) + ε1(BL) > 0)� Note that this is
a single-agent decision problem: x2 is such that player 2 is going to play L re-
gardless of player 1’s decision. Therefore, player 1 will choose B if and only if
the threshold condition above is satisfied. As long as ε1(BL) is drawn from a
known distribution with a strictly increasing cumulative distribution function,
for example, a standard normal distribution 
(·), the value of f1(BL�x1) can
be recovered by inverting the empirical analog of P(B|x):

P(B|x) = P(ε1(BL) > −f1(BL�x1))= 
(f1(BL�x1))�

The uniqueness of f1(BL�x1) is guaranteed by the monotonicity of 
(·).
An analogous argument can be made to identify all of the unknown payoff

parameters by a suitable choice of either x1 or x2. Once we have recovered all
the payoff parameters, the only unknowns are those governing the equilibrium
selection mechanism. We restrict attention to a region where the influence of
the εi on payoffs is small. In this region, the utility function is known by the ar-
gument in the previous paragraph. The unknown part of the model is λ� Since
there are fewer equilibrium than noncolinear moments, P(a|x), the parame-
ters of λ are identified. Our invariance assumption guarantees that identifica-
tion in this region insures identification globally. In the rest of this section, we
present formal results for general N-player games. Appendix A contains the
technical proofs and Appendix B (in the Supplemental Materials) gives more
details of how the results apply to two-by-two games.

ASSUMPTION 4: For any i = 1� � � � �N and action profile k−i ∈ A−i, there ex-
ists a set T k−i

−i of covariates x such that lim‖x‖→∞�x∈T
k−i
−i

P(a−i = k−i|x) = 1�

This assumption requires that for each player i, the covariates x can be
shifted along a dimension such that each element in k−i is a dominant strategy
for each player in −i. This assumption allows for identifying fi(ai� a−i� x) =
xa
i β

a
i as a single-agent discrete choice problem holding a−i fixed at these values

of the covariates x.
The next assumption, requires that utilities recovered from this path can be

extended to the entire range of covariates using the linearity assumption on
the deterministic payoff functions.

ASSUMPTION 5: For all i and all a ∈ A such that the mean utility fi(a�x) is
not normalized, there exists some L0 > 0 such that

inf
L≥L0

min eigE[xa
i x

a
i |x ∈ T a−i

−i �‖x‖ ≥L] > 0�
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THEOREM 1: Under Assumptions 1, 2, 4, and 5, βa
i and hence fi(a�x) is iden-

tified up to the normalization in Assumption 1 for all i and all a for each x.

The next assumption is an invariance property that is required to identify the
equilibrium selection probabilities.

ASSUMPTION 6: The equilibrium selection probabilities depend only on the
latent utility indexes, ρ(x�ε) = ρ(u(a�x� ε)), and are scale invariant with re-
spect to the latent utility indexes, that is, for all α > 0, ρ(αu(a�x� ε)) =
ρ(u(a�x� ε)).

The last assumption requires that the total utility indexes can be approxi-
mated arbitrarily well by the observable components.

ASSUMPTION 7: There exists a set T such that for all δ > 0,

lim
|x|→∞�x∈T

min
i�a

P

[∣∣∣∣ fi(a�x)

ui(a�x� ε)
− 1

∣∣∣∣< δ

]
= 1�(17)

THEOREM 2: In addition to the conditions in Theorem 1, under Assumptions 6
and 7, the equilibrium selection probabilities ρ(u(x�ε)) are all identified from the
observed choice probabilities whenever the cardinality of E(u(x� ε)) is less than or
equal to #A− 1.

REMARK 1: Note that the conditions in this theorem depend on the num-
bers of players and strategies, and generally also on the particular realization
of u(x�ε). When the maximum number of equilibria for a game is less than or
equal to #A − 1, the condition in the above theorem holds uniformly for all
realizations of u(x�ε). Such is the case, for example, for two-by-two games and
for games with two players each equipped with four strategies.

4.4. Exclusion Restrictions

The results of the previous section are not surprising in light of work by Bres-
nahan and Reiss (1991) and Pesendorfer and Schmidt-Dengler (2003), who
demonstrated failures in identification of discrete games. As we noted in the
Introduction, the structure of our models is not unlike treatment effect and
sample selection models: latent utilities f seem analogous to the treatment
equation and λ seems analogous to the selection equation. It is well known
that these simpler models cannot be identified without exclusion restrictions.
That is, we must search for variables that influence one equation, but not the
other. In what follows, we demonstrate that a similar approach is possible in
games.
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The exclusion restrictions that we consider are covariates that shift the utility
of agent i but do not enter as arguments into uj (j �= i) or the equilibrium
selection mechanism λ. In many applications, such covariates are not difficult
to find.

ASSUMPTION 8: For each agent i, there exists some covariate, xi that enters
the utility of agent i, but not the utility of other agents. That is, i’s utility can be
written as fi(a� x̄� xi)� Furthermore, in addition to Assumption 6, ρ(u(α�x�ε))
depends on u(α�x� ε) only through a set of sufficient statistics of dimension
M × (N − 1), where M is a constant that does not depend on the number of
players N .

The first part of Assumption 8 implies that there are agent-i-specific utility
shifters. While this assumption is unlikely to be perfectly satisfied, to a first
approximation it does seem reasonable in many applications. The second part
of Assumption 8 is a weak assumption that will be satisfied, for example, if
the equilibrium selection probabilities depend only on the total utilities of all
players in each equilibrium. This assumption does impose some restrictions
on λ. The function λ cannot depend freely on the utility indexes. Also, it cannot
grow with the number of covariates; otherwise, variation in the covariates will
increase the number of parameters required to characterize the equilibrium
selection mechanism.

THEOREM 3: Suppose that Assumptions 1, 2, 11, 6, and 8 hold. If #xi are
sufficiently large, the necessary order condition is satisfied.

The intuition behind this theorem is quite simple. When K (the number of
support points of xi) increases, the number of conditional choice probabili-
ties increases at the rate of KN , which is larger than KN−1 (the order of the
number of utility and equilibrium selection probability parameters). Our re-
sults demonstrate that identification is possible if we have covariates that are
indexed by the agent’s identity i. Such exclusion results are imposed in most ex-
isting applications of discrete games. For example, consider empirical studies
of strategic entry. In the case of an airline deciding whether to serve a partic-
ular city pair, one such shifter could be the number of connecting routes that
airline has at both endpoints, or whether one or both of the cities is a hub
for that airline. These covariates are typically excluded from the payoffs of an
airline’s competitors. Holmes (2008) and Jia (2008) studied entry decisions by
large retailers such as Walmart and Kmart. Their analysis suggests that a payoff
shifter is the distance from the closest regional distribution centers or company
headquarters.

As a second example, consider technology adoption in the presence of net-
work effects, as in Ryan and Tucker (2009). Here employees within a firm
decide whether to adopt a video-conferencing technology on their personal
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computers. The benefit to any given employee of adoption depends on the
adoption decisions of other employees. Furthermore, the benefit of using this
technology varies with an employee’s rank in the firm, his or her geographic
locale, and his or her job function. All of these characteristics shift the bene-
fits of adoption on an individual basis. For example, senior managing directors
in equities are likely to have different payoffs from using the network than a
junior administrator in human resources.

Finally, we note that the maintained exogeneity assumptions used in our
identification results are quite strong. We assume that the only form of unob-
served heterogeneity is an i.i.d. shock to payoffs. However, it is quite straight-
forward to include random effects in our econometric model by modifying the
importance sampler to permit correlation between the error terms. For ex-
ample, in a study of entry, it will be natural to include market-specific ran-
dom effect. In other applications, it will be natural to include an estimated
markup equation in fi� For example, in a differentiated product market, we
may estimate markups using Berry, Levinsohn, and Pakes (1995). This allows
the economist to control for unobserved cost and demand shocks.

There is a trade-off between restricting the individual utility functions and
restricting the equilibrium selection mechanism. In two-by-two games, as seen
in Section 4.2, even when the equilibrium selection mechanism is completely
known, the mean utility functions are not nonparametrically identified with-
out restrictions. However, if the mean utility parameters are all known, the
three conditional choice probabilities will identify the (maximally) two equi-
librium selection probability parameters without imposing additional restric-
tions. For general games with multiple players and multiple strategies, Tables X
and XI in the Supplemental Material show that the maximum number of equi-
libria typically exceeds the maximum number of moments available in the data.
Therefore, even when the mean utility parameters are completely known, the
equilibrium selection probabilities are not nonparametrically identified with-
out imposing additional restrictions.

5. APPLICATION

5.0. Highway Procurement Auctions

As an application of our estimator, we model strategic entry by bidders into
highway procurement auctions conducted by the California Department of
Transportation (CalTrans) between 1999 and 2000. Econometric modeling of
entry has been of considerable interest in empirical industrial organization;
see Bresnahan and Reiss (1990, 1991), Berry (1992), Mazzeo (2002), Tamer
(2002), and Ciliberto and Tamer (2009). Bajari and Hortacsu (2003), Li and
Zheng (2009), Athey, Levin, and Seira (2008), and Krasnokutskaya and Seim
(2005) have studied entry in bidding markets.

Bidder entry in highway procurements is an attractive application for our
estimator for three reasons. First, CalTrans awards its contracts using an open
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competitive bidding system. For each highway contract, there is a fixed and
publicly announced deadline for submitting bids. Any communication between
bidders about entry or other bidding decisions would be considered collusion
and could lead to civil and criminal penalties. Therefore, the assumption of a
simultaneous move game is plausibly satisfied in our application.

Second, there is a well developed empirical literature for estimating struc-
tural models of bidding for highway procurement contracts; see Porter and
Zona (1999), Bajari and Ye (2003), Pesendorfer and Jofre-Bonet (2003), Kras-
nokutskaya and Seim (2005), and Li and Zheng (2009). The flexible economet-
ric methods proposed by Guerre, Perrigne, and Vuong (2000) are commonly
used in this literature, and in the empirical auctions literature more generally,
to estimate bidder markups. In a first step, we use these methods to precisely
estimate the expected payoffs to each player for all possible configurations of
entry. In a second step, we use the methods from the previous sections to es-
timate the fixed costs of entry and the parameters of our equilibrium selection
mechanism.

Finally, in our data set, the dependent variable is a decision by a contractor
to submit a bid to complete a single and indivisible construction project. We
focus on paving contracts, instead of all contracts awarded by CalTrans (as in
Pesendorfer and Jofre-Bonet (2003)) to reduce the importance of dynamics in
our application. Most of the existing entry literature considers the decision by
a firm to enter a spatially separated retail or service market and compete for
an indefinite length of time. We believe that a static model is more plausible in
our application than in much of the previous work on entry.

Our model of entry in auctions is similar to Athey, Levin, and Serra (2008).
In the first stage, contractors simultaneously choose whether to incur a fixed
cost to participate. In the second stage, participating contractors submit sealed
bids in a first-price auction and the contract is awarded to the low bidder. Our
model of entry often has multiple equilibria, and there is no clear criterion
from economic theory that selects a unique equilibrium of our game. Previous
empirical research on entry in auctions abstracts from the multiplicity problem
by imposing assumptions that guarantee a unique equilibrium.

We contribute to the literature on entry in auctions by estimating λ, the
probability of selecting a particular equilibrium. We parameterize λ to allow
four criteria to influence equilibrium selection: that the equilibrium is in pure
strategies, the equilibrium maximizes joint profits, the equilibrium is Pareto
dominated, and the equilibrium has the highest Nash product among pure
strategy equilibria. To the best of our knowledge, this is the first empirical
analysis of equilibrium selection in a normal form game.

5.0.1. The Bidding Game

In the model, there are i = 1� � � � �N potential bidders who bid on t =
1� � � � � T highway paving contracts. Following previous researchers, we model
bidding in this industry as an asymmetric first-price auction with independent
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private values (see Porter and Zona (1999), Bajari and Ye (2003), Pesendorfer
and Jofre-Bonet (2003), Krasnokutskaya and Seim (2005), and Li and Zheng
(2009)). Let N(t) ⊆ {1� � � � �N} denote the set of contractors who submit bids
on project t� We assume that the set of bidders is common knowledge at the
time bids are submitted.9

Before submitting a bid, bidder i will prepare a cost estimate ci�t . The cost
estimate of bidder i is private information which has a distribution Fi(xi�t),
where xi�t are publicly observable covariates which influence bidder i’s cost
distribution. We follow previous research and include in xi�t an engineering
cost estimate, the distance of contractor i to project t, a measure of i’s back-
log, contractor fixed effects, and project fixed effects. We assume that the cost
distribution has a common support for all bidders and satisfies the regularity
conditions discussed in LeBrun (1996) and Maskin and Riley (2000) so that
an equilibrium exists, is unique, and is strictly increasing in a bidder’s private
information.

Let bi�t(ci�t) be the bidding strategy used by bidder i in auction t and let
φi�t(bi�t) denote the inverse bid function. Bidders are assumed to be risk neu-
tral. The expected profit to bidder i from bidding bi�t is

(bi�t − ci�t)
∏

j∈N(t)�j �=i

(
1 − Fj(φj�t(bi�t)|xi�t)

)
�

Expected profit is the product of two terms. The first term is a markup, (bi�t −
ci�t), which reflects bidder i’s profits conditional on winning the job. Note that
since the bid functions are strictly increasing, the term 1 − Fj(φj�t(bi�t)|xi�t)
is the probability that firm j’s bid is greater than i’s bid bi�t . As a result, the
second term

∏
j∈N(t)�j �=i(1−Fj(φi�t(bi�t)|xi�t)) is the probability that bidder i wins

the contract with a bid of bi�t . Thus, expected profit is a markup times the
probability that firm i wins the contract.

Following Guerre, Perrigne, and Vuong (2000), we rewrite bidder i’s profit
maximization problem as

max
bi�t

(bi�t − ci�t)
∏

j∈N(t)�j �=i

(1 −Gj(bi�t |xt))�

9In principal, it is possible to consider a model where bidders are uncertain about which firms
will participate. Changing our estimator to allow for this possibility would be straightforward.
However, existence and uniqueness of equilibrium bidding functions in the first price asymmetric
auction with random entry has not yet been established to the best of our knowledge.

Also, we believe that allowing the set of bidders to be common knowledge corresponds most
closely to what happens in this industry. Bidders who we have spoken with feel that they are quite
knowledgeable about which other contractors will submit bids. Typically, the closest firms and
firms with the lowest backlogs of outstanding work are most likely to bid. Also, CalTrans provides
a list of plan holders for the project shortly before bids are due that allows the contractors to
learn about which competing firms are interested in the project. A similar modeling assumption
is made in Athey, Levin, and Serra (2008) and Kransnokutskaya and Seim (2005).



1554 P. BAJARI, H. HONG, AND S. P. RYAN

We let Gj(bi�t |xt) denote the equilibrium distribution of bids submitted by firm
j conditional on the publicly observed information xt = (xi�t)i∈N(t)� The first
order conditions for profit maximization imply that

ci�t = bi�t −
[ ∑
j∈N(t)�j �=i

gj(bi�t |xt)

(1 −Gj(bi�t |xt))

]−1

�(18)

Note that the right hand side of the above equation is a function of bi�t and
the distribution of bids, which can be estimated by pooling bidding data across
contracts t = 1� � � � � T . The left hand side is the structural parameter ci�t which
is unobserved by the econometrician� Again, following Guerre, Perrigne, and
Vuong (2000), we evaluate the empirical analog of the right hand side of ex-
pression (18) to recover the structural cost parameter ci�t �10

5.0.2. The Entry Game

In the first stage of our model, bidders simultaneously and independently
decide whether to bid for contract t. Submitting a bid is a costly decision. Based
on extensive industry experience, Park and Chapin (1992) reported that the
cost of preparing a bid is typically 1 percent of bi�t � Publicly traded firms in
the construction industry typically report profit margins of 1–5 percent. This
implies that the fixed costs of bidding are nontrivial compared to a firm’s profit
margins, hence bidders should selectively submit bids on projects they are most
likely to win. Let θi denote the cost to firm i of submitting a bid.

We allow the costs of bidding to vary across firms to rationalize differences
in participation rates. Indeed, as we discuss in the next section, the size distrib-
ution of firms in our data is quite skewed. While there are 271 firms submiting
bids, a small number of these firms account for the majority of total output.

In our application, we focus on entry decisions of the four largest firms, each
having a market share of at least 5 percent, as measured by winning bids. We
denote these firms as i = 1�2�3�4� We take the entry decisions of the other
bidders N(t) \ {1�2�3�4} as predetermined. It would obviously be preferable
to endogenize the entry decisions of all bidders. However, repeatedly solving
for all Nash equilibria with approximately 300 players is not computationally
tractable. Furthermore, we believe that it is innocuous to take the entry deci-
sions of small, fringe firms as exogenous. Such firms rarely win large CalTrans
contracts due to lack of capital and managerial expertise to complete large
projects at a competitive price. Fringe firms typically win much smaller jobs

10In Bajari, Houghton, and Tadelis (2006), we argued that bidders’ payoffs are somewhat more
complicated than in the above model because of change orders and cost overruns. However, we
find that the method of Guerre, Perrigne, and Vuong (2000) estimates bidder profits quite well.
As we report below, our estimates seem sensible given what is known about bidder markups and
other structural parameters.
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in the public sector, such as resurfacing streets for a mid-sized California city,
or smaller private sector jobs, such as resurfacing parking lots for small busi-
nesses. In our CalTrans data, fringe firms have little influence on the winning
bid and hence on profits at the margin. We believe that it is much more impor-
tant to carefully model the largest firms’ entry decisions, and this is where we
focus our attention.

Let ai�t = 1 if firm i decides to submit a bid on project t and ai�t = 0 oth-
erwise. Given ai�t , i = 1� � � � �4, for the largest bidders, the set of bidders who
participate will be denoted as N(t|a). This set includes all the fringe firms ob-
served to participate in the data and those firms i = 1� � � � �4 for which ai�t = 1.
If one of our four largest firms i enters, then conditional on a and xt� i’s profit
will be

ui(a;xt� θi) =
∫ (

bi�t(ci�t;xt�N(t|a))− ci�t
)

(19)

×
∏
j �=i

(
1 −Gj(bi�t |xt�N(t|a)))dF(ci�t|xi�t)− θi�

In the above, bi�t(ci�t;xt�N(t|a)) denotes firm i’s bid function and Gj(bi�t |xt�
N(t|a)) denotes firm j’s bid distribution when the set of entrants is N(t|a) and
the publicly observed project characteristics are xt .

Expression (19) implicitly assumes the following timeline for the game: First,
all large firms simultaneously decide whether to enter. The project character-
istics, xt , and the entry decisions of the fringe firms are common knowledge.
Second, after entering, each of the four largest firms observes which other large
firms have entered the market. Third, all participating bidders independently
make their cost draws ci�t � Finally, firms submit sealed bids and the lowest bid-
der wins. In Equation (19), ui(a;xt� θi) is i’s profits conditional on the entry
decisions of the other large firms, the publicly observed data xt , and the para-
meter θi� Given ui(a;xt� θi), we can specify a normal form game in the frame-
work of Section 2.

5.1. Estimation

Our estimation procedure consists of two steps. In the first step, we
form an estimate of the term

∫
(bi�t(ci�t;xt�N(t|a)) − ci�t)

∏
j �=i(1 − Gj(bi�t |xt�

N(t|a)))dF(ci�t|xi�t) in Equation (19) by adapting the approach proposed by
Guerre, Perrigne, and Vuong (2000). In the second step, we take the estimates
from the first stage and estimate θi, the fixed cost of preparing a bid, and λ, the
selection of equilibrium, using the methods from Sections 2 and 3.

5.1.1. Markup Estimation

The idea behind Guerre, Perrigne, and Vuong’s (2000) estimator is quite
simple. The left hand side of Equation (18) is the bidder’s private informa-
tion, ci�t , which is unobserved by the econometrician. The right hand side is a
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function of the bid, bi�t , the density of bids, gj(bi�t |xt), and the CDF of bids,
Gj(bi�t |xt). By pooling observations from contracts t = 1� � � � � T , we construct
estimates ĝj(bi�t |xt) and Ĝj(bi�t |xt) using standard nonparametric techniques.
We then construct an estimate of firm i’s private information ĉi�t by evaluating
the empirical analog of the right hand side of Equation (18). Once we have re-
covered the distribution of a firm’s private information, we can then compute
the ex post entry profits in Equation (19).

5.1.2. Equilibrium Selection

In the second step, we estimate the fixed costs of bidding, θi, and the proba-
bility that a particular equilibrium is selected, taking the expected entry profits
in Equation (19) as given. We use a conditional logit as a parsimonious speci-
fication of λ. Following the previous literature on entry games, we have found
four criteria proposed for equilibrium selection on entry games. First, in empir-
ical papers such as Tamer (2002), Ciliberto and Tamer (2009), Andrews, Berry,
and Jia (2005), and Jia (2008), it is usually assumed that only pure strategies
are used in the entry game. The authors argue that mixed strategy equilibria
are a priori implausible in these markets. However, in a related experimen-
tal literature, Levin and Smith (2001) argued that mixed strategy equilibrium
seems the most reasonable in auction entry experiments. To acknowledge this
possibility, we construct a dummy variable MIXED(π), which equals 1 if the
equilibrium π involves mixed strategies.

Second, we allow λ to depend on whether the equilibrium is efficient, in
the sense that it maximizes joint payoffs. Economic theory and, specifically,
Ciliberto and Tamer (2009) have proposed this criteria for equilibrium selec-
tion mechanism. Since the firms in our data interact repeatedly, they obviously
have incentives to tacitly collude on an equilibrium that maximizes industry
surplus.

Third, we include a dummy variable that equals 1 if an equilibrium is Pareto
dominated. It is commonly assumed that Pareto dominated equilibria are less
plausible and, therefore, less likely to be observed in the data.

Finally, we include the Nash product of a player’s utilities for pure strategy
equilibria. Harsanyi and Selten (1988) argued that risk dominant equilibria
are more plausible. An equilibrium having a large Nash product implies that
deviating from the observed equilibrium behavior is especially costly, hence
the equilibrium is more likely to be self-reinforcing.

5.2. The Data

We have constructed a unique data set of bidding by highway contractors in
the State of California from 1999 to 2000. We observe 414 contracts awarded
by the California Department of Transportation (CalTrans) during this time
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period.11 The total value of winning bids in this data is $1.326 billion. There
are a total of 1938 bids and 271 bidders in our sample. Highway improvement
projects are awarded using open competitive bidding, which means that any
qualified contractor can submit a bid and contracts are awarded to the lowest
qualified bidder.12 This data set is described in detail in Bajari, Houghton, and
Tadelis (2006). We describe some of the highlights of the data and the industry
in this section.

For each contract t, we observe a detailed list of covariates including bi�t , the
bid of contractor i on project t, ESTt , the engineer’s cost estimate for project t,
DISTi�t the distance in miles of firm i to project t, CAPi�t , the capacity utiliza-
tion of firm i at the time of bidding for project t, and FRINGEi�t , a dummy
variable equal to 1 if firm i is a fringe firm, defined as firms with market shares
of less than 1 percent. The data set includes the bids for all contractors, not just
the winning bids. The engineer’s estimate, ESTt , is constructed by CalTrans as
a fair market value for completing the work. The project plans and specifica-
tions contain an exhaustive list of work items; the estimate is then formed using
blue book prices for specific work items and local material prices.

Table II summarizes the market shares of the 10 largest firms in the indus-
try, where share is defined using the winning bids. The market shares in this
industry are quite skewed. The largest firm, Granite Construction Company,
has a share of 27.2 percent, compared to a share of 1.9 percent for the 10th
largest firm, Sully Miller Contracting. This skewed distribution suggests that
productivity varies across firms and hence it is important to include firm fixed
effects in our estimates of gj and Gj .

Table II shows that the largest firms tend to bid more often as measured by
their participation rate. However, we note that the second largest firm only
submits bids for 7.5 percent of the jobs compared to Granite Construction
Company, which submits bids for 58.9 percent of the jobs. Hence it is important
to account for firm-specific differences in the costs of bidding, θi.

Table III provides summary statistics about the bids. In our data, the average
winning bid is $3.2 million dollars, which is about 6 percent below the engi-
neer’s estimate. Meanwhile, comparing the winning bid to the second highest
bid, the average money left on the table is about 6 percent of the estimate.

11The data contain contracts for paving and exclude other contracts such as bridge repair.
We look at only the subset of contracts where asphalt costs accounted for less than 1/3 of the
winning bid. We focus on paving contracts since capacity constraints and the dynamics empha-
sized in Jofre-Bonet and Pesendorfer (2003) are less important for this set of contracts. In Bajari,
Houghton, and Tadelis (2006) we produced closely related structural estimates. Here we adjust
our estimates to allow for dynamics through nontrivial capacity constraints. We find that such ca-
pacity constraints have little effect on estimated markups. To simplify the presentation, we focus
on a static model of profits, although it would be quite straightforward to extend the analysis to
allow for capacity to influence profit margins and markups.

12In about 5 percent of the projects in our sample, CalTrans rejects all bids and awards the
contracts again at a later date. We do not include these contracts in our sample.
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TABLE II

BIDDER IDENTITIES AND SUMMARY STATISTICS

No. Bids Participation Total Bids for
Company Share No. Wins Entered Rate Contracts Awarded

Granite Construction Company 27.2% 76 244 58.9% 343,987,526
E. L. Yeager Construction Co Inc 10.4% 13 31 7.5% 132,790,460
Kiewit Pacific Co 6.6% 5 30 7.2% 112,057,627
M. C. M. Construction Inc 6.5% 2 6 1.4% 89,344,972
J. F. Shea Co Inc 3.3% 9 40 9.7% 43,030,861
Teichert Construction 3.3% 16 43 10.4% 40,177,076
W. Jaxon Baker Inc 2.9% 13 65 15.7% 37,702,631
All American Asphalt 2.2% 14 33 8.0% 30,764,962
Tullis And Heller Inc 2.1% 10 16 3.9% 27,809,535
Sully Miller Contracting Co 1.9% 17 49 11.8% 27,889,186

This suggests that there is asymmetric information in this market. If the low
bidder knew the cost of the second lowest bidder, then in a Nash equilibrium,
we would expect these two bids to be much closer. Leaving money on the table
does not increase the probability of winning and only decreases the profit of
the low bidder.

Table IV demonstrates that the the ranking of the bids corresponds closely
to the ranking of the contractors’ distances from the project. For instance,
DIST 1, the distance of the lowest bidder, is smaller than DIST 2, the distance
of the second lowest bidder. The closest contractor has a lower cost of hauling
asphalt to the project site and is therefore more likely to win the project.

TABLE III

BIDDING SUMMARY STATISTICS

Obs Mean Std. Dev. Min Max

Winning bid 414 3,203,130 7,384,337 70,723 86,396,096
Markup: (winning bid − estimate)/estimate 414 −0.0617 0.1763 −0.6166 0.7851
Normalized bid: winning bid/estimate 414 0.9383 0.1763 0.3834 1.7851
Second lowest bid 414 3,394,646 7,793,310 84,572 92,395,000
Money on the table: second bid − first bid 414 191,516 477,578 68 5,998,904
Normalized money on the table:

(second bid − first bid)/estimate 414 0.0679 0.0596 0.0002 0.3476
Number of bidders 414 4.68 2.30 2 19
Distance of the winning bidder 414 47.47 60.19 0.27 413.18
Travel time of the winning bidder 414 56.95 64.28 1.00 411.00
Utilization rate of the winning bidder 414 0.1206 0.1951 0.0000 0.9457
Distance of the second lowest bidder 414 73.55 100.38 0.19 679.14
Travel time of the second lowest bidder 414 82.51 97.51 1.00 614.00
Utilization rate of the second lowest bidder 414 0.1401 0.2337 0.000 0.9959
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TABLE IV

DISTANCE TO JOB SITE

Mean Std. Dev. Min Max

DIST1 47.47 60.19 0.27 413.18
DIST2 73.55 100.38 70.19 679.14
DIST3 75.47 95.56 0.13 594.16
DIST4 84.38 89.87 1.45 494.08
DIST5 76.12 86.33 1.25 513.31

In Table V, we regress the bids on the various cost controls. In the second
column, we regress bids on the engineer’s estimate. This has an R2 of 0.987 with
a coefficient of 1.02, suggesting that the engineer’s estimate is a very powerful
explanatory variable. Starting with the third column, we change the dependent
variable to bi�t/ESTt since the variance of the errors in the bid regressions are
likely to be proportional to ESTt . The next set of regressions demonstrates
that distance, the fringe firm dummy, project fixed effects, and firm fixed ef-
fects for the largest four firms are all economically and statistically significant
regressors. Their resultant signs are as anticipated, for example, the positive
distance coefficient reflects bidders’ large transportation costs. Indeed, the av-
erage distance of a firm from the project is 72 miles with a standard deviation
of 92 miles. Our results imply that increasing the distance by a standard de-
viation will raise bi�t/ESTt , relative to the engineer’s estimate, by about 2.3
percent. This is substantial because firms are believed to have profit margins

TABLE V

BID FUNCTION REGRESSIONSa

Variable bi�t bi�t /ESTt bi�t /ESTt bi�t /ESTt

ESTt 1.025
(56.26)

DISTi�t 0.000246 0.000223
(5.66) (5.01)

UTILi�t 0.02539
(0.93)

FRINGEi�t 0.4288
(4.65)

Constant −25,686 1.19 1.001
(0.56) (94.9) (79.98)

Fixed effects No Project Project Project/firm
R2 0.989 0.5245 0.5292 0.5321

aNumber of observations is 1938; t-statistics are reported in parentheses. Fringe is a dummy
variable that equals 1 for a fringe firm. Util denotes utilization rates.
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TABLE VI

LOGIT MODEL OF ENTRYa

I II III

Constant −0.9067 −1.6811
(7.91) (7.53)

DISTi�t −0.00218 −0.00322 −0.00854
(5.42) (5.66) (4.85)

Granite 2.889 4.4537
(13.28) (7.31)

E. L. Yeager — —

Kiewit Pacific −0.1527 1.1969
(0.57) (2.1)

M. C. M. −1.786 −0.70779
(3.94) (1.12)

Fixed effects No No Project
Observations 1656 1656 1068
Number of groups 261
Log-likelihood −784.20 −511.86 −101.0728

aThe dependent variable is whether one of the four largest firms in the industry
decides to submit a bid in a particular procurement; t-statistics are reported in paren-
theses.

of less than 5 percent. Granite Construction, the largest firm in our sample,
reports a profit margin of only 3.31 percent and an operating margin of 5.15
percent. Finally, bi�t/ESTt for fringe firms is 4.2 percent lower. This evidence
supports using our simplifying assumption that fringe firm entry is exogenous.
Fringe firms bid much higher and are unlikely to win many projects as a result.

In Table VI, we estimate a logit model of entry for the four largest firms
in the industry. For each of these firms, we calculate their distance to each
project t even if the firm does not submit a bid. We find that participation is
a decreasing function of the firm’s distance to the project. Also, there is het-
erogeneity across the firms in terms of their participation decisions, suggesting
that inclusion of firm level effects θi is important in modeling entry.

5.2.1. Estimates of Profits

We estimate bidder markups using the approach of Guerre, Perrigne, and
Vuong (2000). Given the number of covariates in our application, it is not fea-
sible to nonparametrically estimate the distribution of bids gj and Gj . Instead,
we use a semiparametric approach. We first run a regression, as in Table V,

bi�t

ESTt

= x′
i�tα+ u(t) + εi�t�
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where the dependent variable is normalized by dividing through by the engi-
neer’s estimate. In addition, we include an auction-specific fixed effect, u(t).
Let α̂ denote the estimated value of α and let ε̂i�t denote the fitted residual.
We will assume that the residuals of this regression are i.i.d. Let Ĥ denote the
Kaplan–Meier estimate of the CDF of the fitted residuals.13

Under these assumptions, the estimated bid distributions satisfy

Ĝi(b|zj�t�N(t)) = Pr
(

bi�t

ESTt

≤ b

ESTt

)
= Pr

(
x′
i�t α̂+ û(t) + ε̂i�t ≤ b

ESTt

)
= Ĥ

(̂
εi�t ≤ b

ESTt

− x′
i�t α̂− û(t)

)
�

That is, the distribution of the fitted residuals, ε̂i�t , can be used to infer the
distribution of the bids. As the estimates in Table V suggest, variation in the
estimated bid distribution will be driven by three factors. The first is the auction
fixed effects, û(t). The second is the distance of each firm from the project; the
further a particular firm is away from the project, the higher its bid will be. The
third is the firm fixed effects. The largest four firms will bid more aggressively
than the smaller fringe firms.14

Recall that we demonstrated earlier that firm-specific profit shifters are suf-
ficient to identify our model under fairly mild parametric assumptions. In our
analysis, distance and firm fixed effects will be the primary shifters of individual
firms’ profits. Each firm has a unique distance to a particular contract t. The
variation in transportation cost across projects generates shifts in the payoffs
of individual firms and therefore allows us to identify our model.

In Table VII, we summarize the distribution of estimated markups on the
1938 bids in our data set. The average markup is about 6 percent. Note that the
distribution of markups is skewed: the median markup is 2.71 percent and the
75th percentile is 5.2 percent. These markups are comparable to the reported
margins of Granite Construction and, more broadly, Census data on markups
in the construction industry.

13We estimate the density h of the fitted residuals using kernel density estimation with an
estimated optimal bandwidth. Since there are 1938 fitted residuals, the estimates of H and h are
quite precise given θ. Ideally, our estimates would take into account the first stage estimation
error in θ. However, the computational burden of performing a resampling procedure such as
the bootstrap is considerable and beyond the scope of this research.

14We note that we must estimate the distribution of each firm i’s bid even if it does not partici-
pate in a particular auction. We have therefore computed the distance of each of the four largest
firms from all t = 1� � � � �414 projects even if they did not submit a bid. We use Equation (18) to
infer the distribution of firm i’s bid in this case. The estimates of Table VI suggest that bidder
i will have a low chance of winning a particular procurement t if it is a long distance from the
project site.
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TABLE VII

MARGIN ESTIMATESa

Variable Num. Obs. Mean Std. Dev. Median 25th Percentile 75th Percentile

Profit margin 1938 0.0644 0.1379 0.0271 0.0151 0.0520

aThe markup is defined as 1 minus the ratio of the estimated cost, which is private information, to the actual bid.

5.2.2. Equilibrium Selection Parameters and Bid Costs

As mentioned in Appendix B.2, the choice of the importance density is vi-
tal for our estimation procedure. To choose an importance density, we first
estimate a private-information version of the entry game to obtain starting
values for bid preparation costs and the profit scale parameter. While these
parameters will not generally be consistent estimates for the complete infor-
mation game, they should be in the correct neighborhood, which greatly aids
convergence of our importance sampling MSM procedure. All equilibrium se-
lection parameters are initially set at zero. We perform several sequential es-
timations, using 409 importance games initialized with the previous iteration’s
final value. When the parameter values are consistent after several iterations,
we run the Laplace-type estimator of Chernozhukov and Hong (2003) to gen-
erate standard errors and to ensure that the estimated coefficients are robust
to the optimization method used in the initial steps. The results are reported
in Table VIII.

TABLE VIII

GAMES ESTIMATION RESULTSa

Variable Mean Median Std. Dev. 95% Confidence Interval

Equilibrium Selection Parameters (λ)
Pure strategy −1�3524 −1�5345 0.7979 −2�4903 0�1954
Joint profit maximizing 6�4365 6�4226 0.5321 5�6151 7�5149
Dominated −5�3841 −5�3316 0.7002 −6�7164 −4�0986
Nash product 4�4143 4�2025 1.1017 2�9651 6�4836

Profit Scale
Profit scale 0�0965 0�0954 0.0015 0�0954 0�0984

Bid Preparation Costs (θi)
Granite Construction 0�2341 0�2393 0.0977 0�0679 0�4271
E. L. Yeager 1�4583 1�4757 0.0941 1�2563 1�6227
Kiewit Pacific 1�6751 1�6720 0.0511 1�5775 1�7789
M. C. M. Construction 2�4490 2�4360 0.1144 2�2547 2�6966

aEstimation and inference were performed using the LTE method of Chernozhukov and Hong (2003). A Markov
chain was generated with 500 draws for each parameter. 409 importance games were used in the importance sampler
for the 409 observations.
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The first parameter that needs interpretation is the coefficient on profit
scale. The expected entry profits for a firm are expressed in tens of thousands of
dollars. These expected profits are then multiplied by the profit scale parame-
ter, equal to 0.0965. Therefore we should interpret each unit of the fixed costs
of bidding as about $96,500. For example, Kiewit Pacific faces an average cost
of approximately $161,650 to prepare a bid, which is roughly five percent of the
average winning bid. This amount varies across the four firms, from $22,590 for
Granite Construction to $235,460 for M. C. M. Construction. Given that win-
ning bids are drawn from the left tail of the bid distribution, these numbers are
roughly consistent with Park and Chapin (1992), who argued that bid prepara-
tion costs are approximately equal to 1 percent of the total bid in magnitude.

A second check of validity is that bid costs should be monotonically and in-
versely related to participation rates. Indeed, the two firms with similar partic-
ipation rates, E. L. Yeager and Kiewit Pacific, have almost identical bid prepa-
ration costs, while the bid costs for M. C. M. Construction, with a low entry
rate of 1.4 percent, are much higher.

Turning to the parameters of the equilibrium selection mechanism, we have
several interesting results. First, mixed strategy equilibria are more likely than
pure strategy equilibria. This is consistent with the results in Levin and Smith
(2001), who found support for mixed strategy equilibria in auction entry ex-
periments. They argued that a pure strategy equilibrium requires too much
coordination of behavior on the part of agents. In a pure strategy equilibrium,
agents must coordinate on which subset of the potential bidders will submit
bids in an auction. The number of subsets of {1� � � � �N} is large even for moder-
ately sized N� In our application, coordinating entry decisions through explicit
communication would be collusion, making coordination even more difficult.

We find that efficiency has a strong effect on the probability of an equilib-
rium being chosen. Given that there are typically many pure and mixed strate-
gies in a given game, this shifter is by far the most influential in deciding which
equilibrium is played. This suggests firms are tacitly colluding, since they are
more likely to choose the Nash equilibrium which maximizes joint profits.

We find that the coefficient on dominated equilibria is strongly negative.
This is also consistent with tacit collusion by bidders in the auction. Finally,
the coefficient on the equilibrium with the highest Nash product is strongly
positive. This indicates that among pure strategy equilibria, the one with the
highest Nash product has a strong tendency to be played in the data.

6. CONCLUSION

Estimating models that are consistent with Nash equilibrium behavior is
an important empirical problem. In this paper, we have proposed algorithms
which estimate both the utilities and the equilibrium selection parameters for
static, discrete games. Our algorithms can be applied to general normal form



1564 P. BAJARI, H. HONG, AND S. P. RYAN

games, unlike those of previous research that frequently apply to specific exam-
ples such as entry games. The algorithms use computationally efficient meth-
ods and our Monte Carlo work demonstrates that they work well even with a
moderate number of observations.

We also study the nonparametric identification of these games. We propose
two strategies: identification at infinity and exclusion restrictions. If payoffs
are restricted to be a linear index and covariates have full support, we can find
a region in which players −i will play a given strategy a−i� This allows us to
treat each agent i’s choice of strategy as a single-agent model. As a result, we
can identify payoff parameters. Knowing payoffs, we can restrict attention to
regions where ε has a small impact on total utility. This means that the payoff
matrix is known, up to a small error. In turn, this allows us to identify λ, the
equilibrium selection mechanism.

We also show that exclusion restrictions allow us to identify our model. We
search for covariates xi which shift the utility of i, but do not enter the utility
of −i. The presence of these covariates allows us to shift the payoff matrix one
cell at a time. Generating this variation allows us to identify the model. In both
approaches, λ must not be too complicated. If there are more equilibria than
moments in the data, we cannot identify a fully general model of λ�

As an application of our methods, we study the decision of four large con-
struction firms’ entry into procurement auctions in California. We recover fixed
bid preparation costs for each of the four firms which rationalize their entry
rates into these auctions. The application also highlights one strength of our
approach: the ability to estimate an equilibrium selection mechanism. Our es-
timates indicate that mixed strategy equilibria are selected with a greater prob-
ability than pure strategy equilibria. We also find that the equilibrium mech-
anism favors joint profit maximization and non-Pareto dominated equilibria.
Among pure strategy equilibria, the one with the largest Nash product is se-
lected with higher probability. The estimation method we propose is, to our
knowledge, the most efficient approach capable of accommodating both mul-
tiplicity and mixed strategy equilibria.

APPENDIX A: PROOFS OF THEOREMS

PROOF OF THEOREM 1: For each i and a = (ai�k−i), the observational
data identify the conditional probabilities P(εi(a) + xa

i β
a
i > εi(a

′
i� k−i) +

x
a′
i�k−i

i β
a′
i�k−i

i |a−i = k−i� x)� Because of Assumption 4, in the limit this converges
to a single-agent decision problem for player i:

lim
|x|→∞�x∈T

k−i
−i

P
(
εi(a)+ xa

i β
a
i > εi(a

′
i� k−i)+ x

a′
i�k−i

i β
a′
i�k−i

i |x)
�

This implies that for each k−i, the ordering of εi(a) + xa
i β

a
i is identified for

a = (ai�k−i) across ai, along the path |x| → ∞ and x ∈ T k−i
−i . Hence the linear
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utility indexes xa
i β

a
i are also identified along this path (cf. Amemiya (1985) and

Fox (2007)). Assumption 5 further identifies the coefficient parameters βa
i . Ac-

cording to Assumption 5, for every βa
i �= βa

i0, there exist a set of x with positive
probability such that xa

i β
a
i �= xa

i β
a
i0, which implies identification of βa

i . Q.E.D.

PROOF OF THEOREM 2: Using Assumption 7, we can recover the mixing
probabilities with arbitrary precision using larger and larger values of the
covariates x. By Assumption 6, the equilibrium selection probabilities with
smaller values of the latent utility indexes are obtained by extrapolation along
the remote sections of a ray that emanates from the origin and goes through
the latent utility indexes. Q.E.D.

PROOF OF THEOREM 3: The proof follows similarly to that of the previ-
ous section. Hold x fixed. Consider a large but finite number of values of xi

equal to K for each agent. Consider all the KN distinct vectors of the form
x= (x1� � � � � xN) that can be formed. Consider the moments generated by these
KN distinct covariates. The number of moments is equal to KN · (∏i#Ai − 1).
The number of mean utility parameters is equal to

∑
iK(#Ai − 1)

∏
j �=i#Aj

plus the number of parameters required to characterize λ. The maximum num-
ber of parameters required to characterize λ depends on the total number of
players and the number of strategies for each player, but does not depend di-
rectly on xi. Thus, the second part of Assumption 8 implies that the number
of equilibrium selection probability parameters grows at most at the rate of
KN−1. The number of utility parameters depends linearly on K and the number
of equilibrium selection probabilities grows at the rate of KN−1, but the num-
ber of moments grows exponentially at the rate of KN . Therefore, by choosing
sufficiently large values for K, the order condition is satisfied. Q.E.D.
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