Skip Navigation

Spring 2012 - 62200 - PA397C - Advanced Empirical Methods for Policy Analysis

Applied Regression

Instructor(s): Zarnikau, Jay
Unique Number: 62200
Day & Time: Th 6:00 - 9:00 pm
Room: SRH 3.122
Waitlist Information:For LBJ Students: UT Waitlist Information
Course Overview

In addition to the Introduction to Quantitative Analysis course in the common core, MPAff students are required to take another three-hour course in quantitative analysis, selected from among a set of courses focusing on the application of quantitative theory and techniques to policy analysis. Topics offered vary from year to year but include econometrics, demographic techniques, systems analysis, simulation modeling, and quantitative indicator methods. As the second course in the two-course MPAff quantitative sequence, this course is intended to provide students with an in-depth understanding and hands-on experience with a specific quantitative method useful in policy analysis. This course is usually taken during the second semester of the first year.

Section Description

This class will explore how various regression modeling techniques can be used to study practical problems and issues in the social sciences and public policy.

The focus of this class is on statistical modeling concepts and how to analyze different problems and data sets.  Little attention will be devoted to formal proofs and derivations. The content of this course will be very similar to an introductory Econometrics course, but we will use less mathematics than is typically used in the Economics Department.  The course material is very similar to (and goes a bit beyond) the second half of the Statistics course that MBA students are required to complete.

Course topics will include:

  • A review of basic statistical concepts
  • Dealing with uncertainty in research and policy problems
  • Modeling philosophy (the thought process behind setting up a statistical model)
  • Software options (Excel and SAS will be used)
  • Approaches to estimating relationships (e.g., least squares, likelihood estimation, Bayes law)
  • Interpretation of regression statistics
  • Hypothesis testing (from frequentist and Bayesian perspectives)
  • Multivariate regression
  • Variable selection, specification testing, and functional forms
  • How to identify and address modeling problems (e.g., autocorrelation, multicollinearity, heteroskedasticity, omitted variables bias)
  • Dummy variables
  • Logit, Probit, Tobit, and Poisson models
  • Basic index theory
  • Time series approaches
  • Forecasting techniques
  • Causality
  • A brief introduction to more advanced approaches, including non-parametric regression and simulation techniques.

Upon completing this course, students should be able to read, understand, critically interpret, and identify the strengths and limitations of many statistical studies encountered in policy reports and in the literature of the social sciences.  The student should also be able competently analyze data sets using common statistical techniques.

This class is cross listed with SSC 385.002 which is the home department.