Web Historical Disclaimer:

This is a historical page and is no longer maintained at this location. Read our Web history statement for more information and visit the link(s) below to access the current version of the site.
The current OnCampus site can be reached at http://www.utexas.edu/oncampus


On Campus
          Office of Public Affairs | Contact Us | UT Home | Search UT  
SEARCH OPA Advanced
     A Publication of THE UNIVERSITY OF TEXAS AT AUSTIN
""

November 28, 2001
Vol. 28, No. 13

Headlines:

Homepage

A Class Act: Informal Classes marks 30th anniversary

Director of Health & Safety says to exercise caution, but keep things in perspective

UT Press offers scholarly books about Middle East

UT and LULAC develop Austin Youth Leadership Academy

Advancements in disease research, mathematical theory take honors at Siemens competition

$7.2 million grant funds medical research

Marketing professor's research blends expertise in music industry, electronic commerce

New division to enhance teaching effectiveness, learning opportunities

Four teams to compete in MOOT CORP® finals

Eckhardt continues to safeguard campus history six years after his death

Norma Cantú brings expertise into classroom

$2.15 NSF grant to improve production of oil, gas

Research team discovers mechanism regulating plant growth

Engineers harness "quantum dots" for neurological research

Orange Santa program makes season brighter

Readership Survey

Anti-terrorism expert calls for increased steps to combat terrorism

Arete: Jessica J. Summers

School of Social Work gets funding for substance abuse research

A salute to military veterans, POWs, MIAs

SEARCH OPA


Advanced

""

   
"" ""

University research team discovers key mechanism regulating plant growth

By Mary Lenz

Researchers at The University of Texas at Austin have discovered the mechanism by which a key hormone called auxin regulates the growth and development of plants by promoting the degradation of repressor proteins. The discovery could eventually allow scientists to manipulate plant growth in desirable ways.

Estelle
Estelle

The researchers’ findings have been published in the Nov. 15 issue of the journal Nature.

Geneticists Dr. William M. Gray, a postdoctoral fellow, and Dr. Mark Estelle, both with The University of Texas at Austin’s Institute for Cellular and Molecular Biology, wrote the paper along with Dr. Stefan Kepinski, Dr. Dean Rouse and Dr. Ottoline Leyser of the Department of Biology at the University of York. Estelle is the D. J. Sibley Centennial Professor in Plant Molecular Genetics. Gray is lead author of the paper.

The auxin study was conducted on a plant called Arabidopsis, the first plant for which the entire genome has been sequenced. Previous studies had identified proteins involved in auxin’s regulation of many aspects of plant development. This is the first study to reveal how the mechanism actually works and to identify the specific complex of proteins that promotes degradation of the repressor proteins.

Auxin is required for plant growth, stimulation of cell division and cell elongation. Among other things, auxin regulates lateral root formation and the direction in which plants grow, or gravitropism.

"It’s why roots go down and shoots go up," Estelle said.

Estelle explained that auxin performs its functions by stimulating gene expression, that is, it turns genes on and off. "What we discovered is that the genes involved in these activities are normally off because there are proteins that act as repressors and prevent the genes from being turned on," Estelle said.

Auxin allows these genes to perform their function by stimulating the degradation of the repressor proteins. Estelle said this is roughly similar to the action of a driver who allows the car to move forward by removing his foot from the brake. The discovery also involves identifying the specific complex of proteins that interact or bind with the repressor proteins and promote their degradation. This particular complex of proteins is similar to complexes of proteins found in all animals, plants and fungi, Estelle said.

Estelle said identifying these proteins is important because "understanding how auxin works may allow us to manipulate plant growth in desirable ways."

Asked the next step for researchers, Estelle said, "We would like to identify the protein that directly interacts with auxin (the auxin receptor) and understand how this signal is transmitted to the protein degradation machinery."

top of page    next article

On Campus Produced by the Office of Public Affairs, The University of Texas at Austin
P.O. Box Z   Austin, Texas   78713-8926
512-471-3151   utopa@www.utexas.edu

News | Experts | Facts | Eyes of Texas | On Campus | Discovery

""