Should nilotinib replace imatinib as first line treatment of chronic myeloid leukemia in chronic phase (CML-CP)?

D. Van Nguyen, Pharm.D.

PGY2 Oncology Pharmacy Resident
South Texas Veterans Affairs Health System, San Antonio, TX
Division of Pharmacotherapy, University of Texas at Austin College of Pharmacy, TX
Pharmacotherapy Education and Research Center, UTHSCSA, TX
October 8, 2010

Learning objectives:

- Outline the epidemiology, pathophysiology, standard treatment, and monitoring parameters for CML
- Understand the limitations of current treatment options
- Assess clinical trials supporting the use of imatinib and nilotinib as first-line treatment for in CML-CP
- Formulate evidence-based conclusions
Epidemiology

- CML accounts for approximately 15% of all leukemias
- The annual incidence is about 5000 new cases
- Risk increases with age
 - Median age at diagnosis is 55 years
- Affect both genders equally
- Only identifiable risk factor for CML is exposure to high-dose radiation

Myeloproliferative disease resulting from a specific genetic mutation

Pathophysiology

- Characterized by the presence of the Philadelphia (Ph+) chromosome and BCR-ABL transcript in leukemic cells
 - 90% of CML are Ph+
- A translocation between chromosome 9 and 22, t(9:22) (q34q11) → fusion of abelson (ABL) gene on chromosome 9 and the break-point cluster (BCR) gene on chromosome 22

- The fusion product BCR-ABL encodes for the BCR-ABL protein

- BCR-ABL protein has constitutively activated tyrosine kinase activity
 - Uncontrolled myeloproliferation
 - Decreased apoptosis
 - Altered cellular adhesion
 - Defective DNA repair

![Diagram of CML Mechanism](image)

Figure 2. Mechanism of CML. Savage GD, et al. N Engl J Med. 2002;346:685

- Clinical presentation²,⁴

 - Signs and symptoms
 - LUQ abdominal pain
 - Weight loss
 - Fatigue
- **Laboratory**
 - Leukocytosis, thrombocytosis, anemia
 - Increased granulocytes
 - Increased uric acid and lactase dehydrogenase (LDH)
 - Decreased alkaline phosphatase

- **Physical exam**
 - Splenomegaly

- **Diagnosis**
 - Bone marrow
 - Hypercellular
 - Myeloid to erythroid ratio at least 10 to 1
 - Normal is 3 to 1
 - Cytogenetics
 - Gold standard for diagnosis
 - t(9,22)
 - Ph+
 - Reverse transcriptase polymerase chain reaction (RT-PCR)
 - BCR-ABL transcripts

- **Prognosis**
 - Triphasic
 - Chronic → accelerated → blast

<table>
<thead>
<tr>
<th>Table 1. M.D. Anderson Cancer Center CML criteria<sup>6</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>Chronic (CP)</td>
</tr>
<tr>
<td>Accelerated (AP)</td>
</tr>
<tr>
<td>Blast (BP)</td>
</tr>
</tbody>
</table>

Abbreviations: CML-chronic myeloid leukemia; CP-chronic phase; AP-accelerated phase; BP-blast phase

- More than 90% of newly diagnosed patients are in chronic phase
- Progression from chronic to blast phase increases with time
 - 5-10% in the first 2 years
 - 20-25% after two years
Risk stratification
- Calculated based on age, platelet count, peripheral blast, and spleen size
- Hasford score places fewer people in the high-risk category vs. Sokal score

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>50-60</td>
<td>102</td>
</tr>
<tr>
<td>Intermediate</td>
<td>36-40</td>
<td>80-95</td>
</tr>
<tr>
<td>High</td>
<td>24-30</td>
<td>45-60</td>
</tr>
</tbody>
</table>

- No current risk stratification system derived from TKI therapy

Monitoring Parameters

<table>
<thead>
<tr>
<th>Response</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td>CHR</td>
</tr>
<tr>
<td></td>
<td>Plt <450x10^9/L</td>
</tr>
<tr>
<td></td>
<td>WBC <10x10^9/L</td>
</tr>
<tr>
<td></td>
<td>No immature granulocytes</td>
</tr>
<tr>
<td></td>
<td>Basophils <5%</td>
</tr>
<tr>
<td></td>
<td>Non palpable spleen</td>
</tr>
<tr>
<td>Cytogenetic</td>
<td>CCR</td>
</tr>
<tr>
<td></td>
<td>No Ph+ metaphases</td>
</tr>
<tr>
<td></td>
<td>1-35%</td>
</tr>
<tr>
<td></td>
<td>36-65%</td>
</tr>
<tr>
<td></td>
<td>66-95%</td>
</tr>
<tr>
<td></td>
<td>>95%</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>mCR</td>
</tr>
<tr>
<td></td>
<td>minCR</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Molecular</td>
<td>CMR</td>
</tr>
<tr>
<td></td>
<td>Undetectable BCR-ABL mRNA transcripts by real time quantitative and/or nested PCR in 2 consecutive samples</td>
</tr>
<tr>
<td></td>
<td>MMR</td>
</tr>
<tr>
<td></td>
<td>BCR-ABL to ABL ratio less than or equal to 0.1%</td>
</tr>
</tbody>
</table>

Abbreviations: CHR-complete hematologic response; CCR-complete cytogenetic response; PCR-partial cytogenetic response; mCR-minor cytogenetic response; minCR-minimal cytogenetic response; CMR-complete molecular response; MMR-major molecular response

Evolution of treatment

- Busulfan
 - Effective in lowering white blood count (WBC)
 - No effect on disease progression
 - Significant toxicity

- Hydroxyurea
 - Better tolerated than busulfan
 - Effective in lowering WBC and reducing splenomegaly
 - No effect on disease progression

- Allogeneic stem cell transplant
 - Only curative option
 - 3-5 year survival rate of 40-80%
 - Limited by transplant related mortality (5-50%) and lack of suitable donor
- **Interferon alpha (TNFα)**
 - Naturally occurring glycoprotein found to be effective in CML in 1980
 - High rate of hematologic response (40-80%)
 - Minimal complete cytogenetic response (5-25%)
 - Median survival: 60-90 months
 - Poor safety profile

- **Tyrosine kinase inhibitors (see appendix 1)**\(^2,3,9,11-13\)
 - **Mechanism of action**
 - Blocks the binding of ATP to the BCR-ABL tyrosine kinase and inhibit the tyrosine kinase activity of BCR-ABL mediated signaling pathways
 - Induced inactivation of downstream pathways results in reduction of excessive myeloid cell proliferation
 - Imatinib and nilotinib binds to the inactive conformation of BCR-ABL tyrosine kinase

![Figure 3. Mechanism of tyrosine kinase inhibitor. Adapted from An X, et al. Leukemia Research 2010;34:1255-68](image)

- **First generation: imatinib**
 - FDA approved in 2003 for first-line treatment
 - Currently the standard first-line treatment

- **Second-generation: nilotinib**
 - More potent than imatinib
 - FDA approved in 2007 for second-line treatment
 - On June 2010, FDA approved for first-line
International Randomized Study of Interferon and STI571 (IRIS)14

- **Objective**
 - To compare the efficacy of imatinib versus interferon alfa and low-dose cytarabine in newly diagnosed CML-CP

- **Design**
 - Prospective, multicenter, open-label, phase 3, randomized, controlled

- **Methods**
 - **Inclusion**
 - Adults with newly diagnosed Ph+ CML in chronic phase
 - Previously untreated (except hydroxyurea, anagrelide, or both)
 - Eastern Cooperative Oncology Group (ECOG) <3
 - Adequate organ function
 - **Exclusion**
 - Breast-feeding or pregnant
 - Uncontrolled serious medical conditions
 - Undergone major surgery within the preceding four weeks
 - Seropositive for HIV
 - History of another cancer within the previous five years (except basal-cell carcinoma or cervical carcinoma in situ)
 - **Treatment**
 - Stratified according to Sokal and Hasford score
 - Arm 1: imatinib 400 mg PO daily
 - Arm 2: interferon alfa and low-dose cytarabine (I+C)
 - Gradual dose escalation of interferon alfa to a target of 5 mU/m2 as tolerated
 - Once maximum dose of interferon alfa was achieved, cytarabine 20 mg/m2/d SC x 10 days every month
 - Dose modification allowed if no CHR within 3 months or minor CR at 12 months
 - Double imatinib dose (400 mg BID) or increase cytarabine to 40 mg/day x 15 days each month
 - **Crossovers**
 - No or loss of response, increase WBC, or treatment intolerance
 - **End points**
 - **Primary**
 - Progression-free survival (PFS)
 -Death from any cause during treatment
 -Development of AP/BP
 -Loss of complete hematologic response (CHR)
 -Loss of major cytogenetic response (MCR)
 -Doubling of WBC
 - **Secondary**
 - Rate of CHR
 - Rate of MCR
 - Safety and tolerability
 - **Statistics**
 - Intent-to-treat analysis of primary endpoint
 - Rates of hematologic and cytogenetic response were estimated according to Kaplan-Meier method
 - Treatment effect was evaluated with the log-rank test
All patients who received at least one dose of study drug were included in the safety analysis.

- Results
 - N = 1106
 - Imatinib (n=533)
 - I+C (n=533)
 - Similar characteristics at baseline
 - Mean follow-up: 19 months
 - Progression-free survival
 - At 12 months: 96.6% in imatinib vs. 79.9% in I+C (P<0.001)
 - At 18 months: 92.1% vs. 73.5% (no P value)

![Figure 4. Kaplan-Meier estimate of progression-free survival. Adapted from O'Brien S, et al. Eng J Med 2003;348:994-1004](image)

- Responses
 - Statistically significant difference in CHR and MCR between imatinib and I+C (P<0.0001)

<table>
<thead>
<tr>
<th>Table 4. Rates of best observed hematologic and cytogenetic responses^14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Percent (95% CI)</td>
</tr>
<tr>
<td>CHR</td>
</tr>
<tr>
<td>MCR</td>
</tr>
<tr>
<td>CCR</td>
</tr>
<tr>
<td>PCR</td>
</tr>
</tbody>
</table>

Abbreviations: I+C-interferon alfa and cytarabine; CHR-complete hematologic response; MCR-major cytogenetic response; CCR-complete cytogenetic response; PCR-partial cytogenetic response.
• No difference in estimated overall survival at 18 months
 • 97.2% in imatinib vs. 95.1% in I+C (P = 0.16)

• Adverse events
 • Most common in imatinib group (30%-50%)
 ♦ Superficial edema
 ♦ Elevated liver enzymes
 ♦ Nausea, diarrhea
 ♦ Muscle cramps, musculoskeletal pain
 ♦ Rash, fatigue, HA
 • Most common in I+C (30-80%)
 ♦ Elevated liver enzymes
 ♦ Musculoskeletal and joint pain
 ♦ Nausea, diarrhea, constipation
 ♦ Pyrexia, insomnia, depression, rigors
 • Grade 3 or 4

<table>
<thead>
<tr>
<th>Table 5. Rate of most common grade 3 or 4 adverse effects (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Effect</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Fatigue</td>
</tr>
<tr>
<td>Depression</td>
</tr>
<tr>
<td>Neutropenia</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
</tr>
</tbody>
</table>

➢ Strengths
 ▪ Adequately powered, randomized study
 ▪ Patients were stratified using appropriate criteria
 ▪ Imatinib was compared to standard therapy at the time that the study was conducted

➢ Weaknesses
 ▪ High crossover rate prevented true assessment of overall survival between the two arms
 ▪ Although the study duration was adequate to show short-term benefit, it was too short to show long-term benefit

❖ Molecular response of IRIS
 ➢ At least 3-log reduction of BCR-ABL transcript among those who achieved CCR at 12 months
 • 39% imatinib vs. 2% I+C, P < 0.001

➢ Progression free survival

<table>
<thead>
<tr>
<th>Table 6. Correlation between response and PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response at 12 months</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>CCR and MMR</td>
</tr>
<tr>
<td>CCR and <MMR</td>
</tr>
<tr>
<td><CCR, no MR</td>
</tr>
</tbody>
</table>

Abbreviations: PFS—progression free survival; CCR—complete cytogenetic response; MMR-major molecular response; MR—molecular response
Eight-year follow up of IRIS16

- 55% (n=304) remained on imatinib treatment
- Estimated event-free survival (EFS) was 81%
- Freedom from progression to AP/BC was 92%
 - None of the patient who achieved MMR at 12 months progressed to AP/BC
- Estimated OS was 85%
 - 93% when based on CML-related deaths and those prior to stem cell transplant only
- Patients with partial CR at 6 months and 12 months were more likely to achieve a stable CCR than have an event
 - At 6 months: 63% stable CCR vs. 17% estimated event rate
 - At 12 months: 57% stable CCR vs. 20% estimated event rate
 - No P-value reported
- 86% achieved MMR
- No new unreported adverse effect

Suboptimal or failure to imatinib (see appendix 2)5,17,19,18

- Imatinib intolerance
- Poor compliance
- Imatinib resistance17
 - Incidence is about 2-4% annually
 - Rate decline after two years of continuous treatment

<table>
<thead>
<tr>
<th>Table 7. Annual rate of imatinib resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>Rate (%)</td>
</tr>
</tbody>
</table>

- Mechanisms of imatinib resistance (figure 5)19
 - Drug efflux
 - Plasma-protein binding
 - BCR-ABL domain mutations
 - Several mutants have been identified
 - Some are sensitive to second-generation TKIs
 - T315I mutants are resistant to all approved TKIs
 - Activation of downstream pathways (eg. SCR family)
 - BCR-ABL gene amplification
Figure 5. Mechanisms of resistance to tyrosine kinase inhibitors. Adapted from Krause SD, Van Etten AR. N Engl J Med. 2005;353:172-87

- Treatment strategies
 - High-dose imatinib as first line
 - Overcoming drug efflux and plasma protein binding
 - The randomized phase 3 Tyrosine Kinase Inhibitor Optimization and Selectivity study (TOPS)20
 - 400 mg vs. 800 mg of imatinib in newly diagnosed CML-CP
 - CCR at 12 months: 66% vs. 70% (P=0.002)
 - MMR at 12 months: 40% vs. 46% (NS)
 - Higher rate of neutropenia, thrombocytopenia, rash, diarrhea, myalgia, edema, and dypsnea in the 800-mg imatinib group
 - Baccarani et al21
 - 400 mg vs. 800 mg imatinib in newly diagnosed CML-CP
 - CCR and MMR at 12 months: no difference
 - Limitations of using high-dose imatinib as first line
 - Inconsistent efficacy
 - Higher rate of adverse event
 - Nilotinib22
 - 30 times more potent than imatinib
 - Active against most imatinib-resistant mutants
 - Cellular transport independent of human organic cation transporter 1 (hOCT1)
Nilotinib

- Nilotinib as second line4,22,23

| Table 8. Results of trials evaluating nilotinib as second-line therapy |
|-------------------|-------------------|
| | Kantarjian et al24 | Le Coutre et al25 |
| No. of patient | 321 | 137 |
| Follow-up duration (months) | 19 | 11 |
| CHR (%) | 91 | 31 |
| MCR (%) | 59 | 32 |
| CCR (%) | 41 | 20 |

Abbreviations: CHR-complete hematologic response; MCR-major cytogenetic response; CCR-complete cytogenetic response

- Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients (ENESTnd) study24

 ➢ **Objective**
 - To compare the efficacy and safety of nilotinib versus imatinib in patients with newly diagnosed Ph+ CML-CP

 ➢ **Design**
 - Phase 3, randomized, open-label, multicenter

 ➢ **Methods**
 - **Inclusion**
 - Adults with newly diagnosed Ph+ CML-CP
 - No prior treatment with a TKI or any medical treatment for CML for more than 2 weeks
 - Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2
 - Adequate organ function
 - **Exclusion**
 - Impaired cardiac function
 - Currently taking warfarin, CYP3A4 inducers or inhibitors, or any medication with the potential to prolong QT interval
 - **Treatment**
 - Stratified according to Sokal risk score
 - Arm 1: Nilotinib 300 mg PO BID
 - Arm 2: Nilotinib 400 mg PO BID
 - Arm 3: Imatinib 400 mg PO once daily
 - Imatinib dose escalation to 400 mg BID was permitted if suboptimal response or treatment failure
 - Dose escalation of nilotinib and crossover were not permitted
 - **End points**
 - **Primary**
 - Rate of MMR at 12 months
 - **Secondary**
 - Rate of CCR by 12 months
 - **Others**
 - Progression to AP or BP
 - Adverse events
 - **Statistics**
 - Intention-to-treat analysis of primary end point
 - A 2-sided Cochran-Mantel-Haenszel test was used at a 5% level to test statistical significance of response rates
Time-to-event comparisons were estimated using Kaplan-Meier curves and compared using the log-rank test.

Safety analysis included all patients who received at least 1 dose of study drug.

Results

- N = 846
 - Nilotinib 300 (n = 282) vs. nilotinib 400 (n = 281) vs. imatinib (n = 283)
 - No difference in baseline characteristics or Sokal risk score

- Duration
 - 14 months for all treatment groups

- Treatment is ongoing; pending 5-years follow-up

- MMR

![Major molecular response (%)](image)

- Median time to first MMR
 - Nilotinib 300: 8.6 months
 - Nilotinib 400: 11 months
 - Imatinib: median not yet achieved
 - No P value reported

- CCR at 12 months (Nilotinib 300 vs. nilotinib 400 vs. imatinib)
 - 80% vs. 78% vs. 65% (P < 0.001 for both comparisons)

- Progression to AP/BP at 12 months (Nilotinib 300 vs. nilotinib 400 vs. imatinib)
 - Nilotinib 300 vs. imatinib: <1% (n = 2) vs. 4% (n = 11), P = 0.01
 - Nilotinib 400 vs. imatinib: <1% (n = 1) vs. 4% (n = 11), P = 0.004

- No patient who had a MMR progressed to AP/BP at 12 months

- Adverse events
 - Most common in nilotinib (30-70%)
 - Rash, pruritis
 - Elevated total bilirubin, liver enzymes
 - Hyperglycemia
Most common in imatinib (30-45%)
 - Nausea
 - Increased alkaline phosphatase
 - Decreased phosphate

- Grade 3 or 4

| Table 9. Rate of most common grade 3 or 4 adverse effect (%) |
|------------------|----------------|----------------|----------------|
| Adverse Effect | Nilotinib 300 | Nilotinib 400 | Imatinib |
| Neutropenia | 12 | 10 | 30 |
| Thrombocytopenia | 10 | 12 | 9 |
| Anemia | 3 | 3 | 5 |
| Increased total bilirubin | 4 | 8 | <1 |
| Increased ALT | 4 | 9 | 2 |

- Strengths
 - Adequately powered
 - Patients were stratified using appropriate criteria
 - Compared to current standard therapy

- Weaknesses
 - Longer follow-up needed to confirm response durability (pending results)
 - No report of compliance
 - Although MMR was shown to predict PFS for imatinib, there is no data validating this surrogate endpoint for nilotinib.

Summary

- IRIS established imatinib as standard first-line therapy
- Eight year follow-up data of IRIS confirmed the durable efficacy and safety of imatinib
- Nilotinib is active against most imatinib-resistant mutations
- ENEStnd showed improved response rates and shorter time to response for nilotinib vs. imatinib
- Correlation between early response and durability of response was based on imatinib data
- Nilotinib is more potent than imatinib

Discussion

- Standard time to response based on imatinib might not be applicable to nilotinib
- Remaining questions
 - What are the long-term benefits of achieving an early response with nilotinib?
 - Could earlier exposure to nilotinib result in new mutations that are resistant to all TKIs?
 - What is the overall long-term clinical impact of using nilotinib as first-line therapy?
- Benefit of response vs. risk of resistance and unknown long-term effect

Conclusions

- Imatinib remains a reasonable, effective, and safe therapeutic option for newly diagnosed CML-CP
- Long-term follow-up of the ENEStnd study is needed to confirm the benefit of using nilotinib as first-line therapy in CML-CP
- Until longer follow up data is available, nilotinib should not replace imatinib as first-line treatment of CML-CP
Appendix A

Table 11. TKIs approved for first-line therapy of CML-Cp11-13

<table>
<thead>
<tr>
<th></th>
<th>Imatinib (Gleevec)</th>
<th>Nilotinib (Tasigna)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Binds to inactiv\textsubscript{e} conformation of BCR-ABL</td>
<td>Binds to the inactive conformation of the BCR-ABL protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30x more potent than imatinib</td>
</tr>
<tr>
<td>Dosage</td>
<td>400 mg daily</td>
<td>300 mg BID</td>
</tr>
<tr>
<td>Dose adjustments</td>
<td>Hepatic: 25% decrease in severe impairment</td>
<td>Hepatic: 25%-33% initial dose reduction for mild to moderate impairment, 50% dose reduction for severe impairment</td>
</tr>
<tr>
<td></td>
<td>Renal: Initial 50% decrease in moderate to severe impairment; may titrate up as tolerated</td>
<td>Renal: none</td>
</tr>
<tr>
<td></td>
<td>Other: 50% decrease if use with a strong CYP450 inducer</td>
<td>Other: adjustments indicated for QT prolongation, neutropenia, thrombocytopenia according to abnormal values</td>
</tr>
<tr>
<td>Administration</td>
<td>Orally with food</td>
<td>Orally on an empty stomach</td>
</tr>
<tr>
<td>Common adverse effects</td>
<td>Edema, n/v/d/dyspepsia (improved when taken with food), muscle cramps, musculoskeletal pain, rash, fatigue</td>
<td>Rash, pruritus, HA, n/v/c/d, fatigue, myalgia, dyspepsia, nasopharyngitis, arthralgia, pyrexia, upper urinary tract infection, cough, myelosuppression</td>
</tr>
<tr>
<td>Metabolism</td>
<td>CYP450 (mostly CYP3A4)</td>
<td>CYP450</td>
</tr>
<tr>
<td>Excretion</td>
<td>Biliary</td>
<td>Biliary</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>CYP450 inducers and inhibitors may alter level</td>
<td>Strong CYP450 inducers may alter level</td>
</tr>
<tr>
<td></td>
<td>Increase APAP level</td>
<td>The drug is an inhibitor of CYP3A4, 2C8, 2C9, 2D6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is also an inducer of CYP2B6, 2C8, and 2C9</td>
</tr>
<tr>
<td>Contraindication</td>
<td>None</td>
<td>Hypokalemia, hypomagnesemia, long QT syndrome</td>
</tr>
<tr>
<td>Availability</td>
<td>Scored tablets: 100 mg and 400 mg</td>
<td>Hard capsules: 150 mg and 200 mg</td>
</tr>
</tbody>
</table>

Abbreviations: TKIs-tyrosine kinase inhibitors; MOA-mechanism of action; CML-CP-chronic myeloid leukemia in chronic phase; BID-twice daily; CYP450–cytochrome P450; d/n/v-diarrhea/nausea/vomiting; HA-headache; c-constipation; APAP-acetaminophen
Appendix B

| Table 11. European LeukemiaNet response evaluation criteria to imatinib
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>Suboptimal response</td>
<td>Failure</td>
</tr>
<tr>
<td>At 3 months</td>
<td>CHR + mCR</td>
<td>No CR</td>
</tr>
<tr>
<td>At 6 months</td>
<td>PCR</td>
<td><PCR</td>
</tr>
<tr>
<td>At 12 months</td>
<td>CCR</td>
<td>PCR</td>
</tr>
<tr>
<td>At 18 months</td>
<td>MMR</td>
<td><MMR</td>
</tr>
</tbody>
</table>

Any time during treatment:
- Stable or improving MMR
- Loss of MMR or obtain mutations
- Loss of CHR, loss of CCR, or obtain mutations

Abbreviations: CHR-complete hematologic response; mCR-minor cytogenetic response; CR-cytogenetic response; PCR-partial cytogenetic response; CCR-complete cytogenetic response; MMR-major molecular response

Appendix C

| Table 12. Risk score equations
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sokal risk score equation</td>
</tr>
<tr>
<td>Hasford risk score equation</td>
</tr>
</tbody>
</table>

References

16. Deininger, Michael, O’Brien, et al. International Randomized Study of Interferon Vs STI571 (IRIS) 8-Year Follow up: Sustained Survival and Low Risk for Progression or Events in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Treated with Imatinib. ASH Annual Meeting Abstracts. 2009;114:1126
18. Stein B, Smith BD. Treatment options for patients with chronic myeloid leukemia who are resistant to or unable to tolerate imatinib. Clin Ther 2010;32:804-820