Student Information Training Programs Research Centers

Pharmacology & Toxicology

Research and Graduate Training Faculty


Vasquez, Karen, Ph.D.
Professor of Pharm./Tox.
Doluisio Regents Professor
PHR 5.224B & DPRI 2.214

Research Interests

Key Topics: DNA damage and repair, genomic instability, gene targeting, DNA structure, cancer therapeutics

Current Research

Our research efforts are focused in three general areas within an overall theme of genome instability, DNA damage and mechanisms of repair. A unique feature of our approach is an emphasis on the role of DNA structure, including non-canonical structures such as triplex DNA, as recognition sites for repair machinery, sources of genomic instability, and as a basis for technology to target DNA damage to specific genomic sites.

1. DNA structure in genomic instability and human disease.
The consequences of genomic instability are causative factors for several human diseases that involve repetitive DNA sequences. Many repetitive sequences are able to adopt non-B secondary structures. Interestingly, many of these repeats occur near breakpoints of chromosomal translocations, implicating them in cancer etiology. One example is the H-DNA-forming sequence in the human c-MYC gene that maps to breakage hotspots in Burkitt's lymphoma, that we have discovered is both mutagenic and induces DNA double-strand breaks in mammalian cells. These exciting results provide the first evidence that naturally occurring H-DNA structures are mutagenic; they also support a role for DNA structure in oncogenic translocations. Our studies will determine the mutagenic potential and mechanistic role of non-canonical DNA structures in human disease, with an emphasis on translocation-mediated cancers.

2. Molecular mechanisms of DNA damage recognition and repair.
Defects in DNA repair systems can lead to severe clinical disorders; for example, it is estimated that ~90% of human cancers result from improperly repaired DNA damage. Our work aims to elucidate the molecular basis of damage recognition in order to develop a better understanding of the mutagenic potential and cancer risks of different types of DNA lesions.

3. Novel strategies to modify gene structure and function in living organisms.
An area of intense investigation in my laboratory is the development of triplex technology to improve the existing gene targeting methods by directing damage to specific genomic sites to increase the frequency of recombination and to direct gene inactivation. Our objective is to improve the utility of triplex technology as a tool for genetic manipulation in animals and to develop novel therapeutic strategies for treating cancer.

More information about Dr. Vasquez
> Education and Training
> Selected Publications
> Lab

(Download PDF Reader.)

Last Reviewed: January 28, 2015

Division Information

Mailing Address:
Pharmacology & Toxicology
College of Pharmacy
The University of Texas
at Austin
107 W. Dean Keeton
Stop C0875
Austin, TX, USA

Email Address: pharmtox

Phone: 512-471-5158

Parkinson Gene Link May Aid Battle Against Disease

Dr. Som Mukhopad-
hyay led the research team that focused on the gene SLC30A10 and its role as a "door opener" in helping to remove elevated levels of manganese from cells. The study was published in the Oct. 15, 2014 issue of The Journal of Neuroscience.

> Read more about Dr. Mukhopadhyay's research.

Erickson Authors New Book

"Drugs, the Brain and Behavior" is co-authored by Dr. Carlton Erickson, the college's associate dean for research and graduate studies, and Dr. John Brick, executive director of Intoxikon International.

> Read more about Dr. Erickson's new book.

Gore receives SEBM award

Andrea Gore is named to the SEBM Distinguished Scientist Award.

> Read more about Dr. Gore's new award.

index of the major headings: a b c d e f g h i j k l m n o p q r s t u v w x y z