Development of Inhaled Tacrolimus: Human Safety and Formulation and Improvement Formulations

Alan B. Watts1, Yi-Bo Wang1, Stephanie M. Levine2, Jay I. Peters2, Robert O. Williams III1
1 College of Pharmacy, University of Texas at Austin, Austin, TX, USA
2 University of Texas Health Science Center in San Antonio, San Antonio, TX, USA

Objective

The purpose of this study was to evaluate the clinical tolerability of inhaled tacrolimus as a nebulized dispersion. Additionally, the impracticability of nebulized tacrolimus has led to the initiation of development of a dry powder formulation. As a second objective, a novel dry powder formulation of tacrolimus was investigated for geometric size and aerodynamic properties.

Introduction

The overall use of rate of long-term transplant patients relies on the availability of both sides. In patients with transplant patients with approximately 30% survival. Cross-pro poverty transplant issues. The most common causes of mortality, bronchiolitis obliterans syndrome and infection, may be attributed to an inability to control the therapeutic levels of immunosuppressive drug and reduction of rejection therapy because of interindividual side effects.

Ocular tacrolimus is used in numerous immunosuppressive regimens; however, required dose monitoring and its unacceptably high systemic immunosuppressive (2). A more appropriate method of administration for long-term transplant recipients may be to target immunosuppression in the lung using inhaled tacrolimus.

Nebulization of tacrolimus is complicated by its poor solubility in water, non-Newtonian solution, therefore, a non-aerosol formulation of tacrolimus was developed for delivery via nebulization.

Materials and Methods

Clinical Safety of Single Dose in Healthy Subjects

Healthy adults (n = 10) were enrolled in a single-dose study and administered 3 mg of inhaled tacrolimus using an Aeroneb (Pro Air). Inhaled tacrolimus was divided in normal solubility in aqueous and particulate until the liquid remained. The statin status of each subject was determined immediately before dosing. The post-dose and 1st post-dose by venipuncture, complete blood count and profile and profile test. Tacrolimus blood levels were determined by radioreceptor assay (RBA).

Development of Tacrolimus Powder for Inhalation

A dry powder formulation of tacrolimus was developed using a rapid-acting pressurized technology and characterized by particle size and aerodynamic particle size distribution (APS). In a Healthcheck device (BreathLink, Breathing Rate, Georgia). Geometric particle size distribution was determined by log-normal fitting using a lognormal model. The inhalation device used in this study was a Healthcheck device (BreathLink, Georgia).

Results and Discussion

Clinical Safety of Single Dose in Healthy Subjects

Figure 3: Blood levels and spirocyclic in healthy subjects after a single dose of nasopharyngeal tacrolimus dispersions

While demonstrating a stability, nebulized tacrolimus requires no maintenance before administration. Long-term dosing, and may be inhaled regularly. The dry powder formulation of tacrolimus is shown to be highly potent in a single dose of nasopharyngeal tacrolimus.

Development of Tacrolimus Powder for Inhalation

A rapid-acting pressurized technology to produce a novel powder for inhalation (2). Inhaled tacrolimus in aerosolized dry powder formulation for the treatment of asthma and allergic rhinitis. Figure 4 shows the effect of dose injected by the peak flow in the geometric diameter of 2 mg of tacrolimus. Furthermore, the low density of the formulation results in a non-effective intrapulmonary dose. However, the low density of the formulation results in a non-effective intrapulmonary dose. Low density powder aerosol has been demonstrated previously. Therefore, the author of the study recommends this formulation for development of a new formulation of tacrolimus.

Figure 5: Geometric and aerodynamic particle size of aerosolized particle size of tacrolimus.

A rapid-acting pressurized technology was used to produce tacrolimus powder for inhalation. (3) Powder modes have demonstrated that it is highly potent in a single dose of nasopharyngeal tacrolimus.

References


Conclusion

Single-dose inhaled tacrolimus has no apparent safety/tolerability limitation in clinical investigation. Further, systemic levels are sub-therapeutic, suggesting localized lung therapy. Reformation of tacrolimus into an engineered dry powder may provide several improvements over nebulized therapy, including improved aerosol properties and reduction of administration time.