Self-organizing Microgrids
Virtual Oscillator Control for Voltage Source Inverters

Sairaj Dhople
sdhople@umn.edu

collaborators
Brian Johnson, Abdullah Hamadeh, Florian Dörfler
Sairaj Dhople received the B.S., M.S., and Ph.D. degrees in electrical engineering, in 2007, 2009, and 2012, respectively, from the University of Illinois at Urbana-Champaign.

He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Minnesota (Twin Cities), where he is affiliated with the Power and Energy Systems research group.

His research interests include modeling, analysis, and control of power electronics and power systems with a focus on renewable integration.
Challenges:

- Low-inertia
- Minimize communication
- Plug and play
- Intermittency
- Reliability
Capacity of 2012 PV increased by 80% to 3.3 GW

Annual capacity growth rate > 40% for 6 years
Droop Control
- Inverter mimics synchronous machine
- Duplicating bulk power system

Limitations
- Sinusoidal steady-state assumption
- Slow dynamics
- Sensitivity to parameters
- Load-dependent frequency
- Rigid hierarchical control
Synchronization in nature

- Single agent
- Group behavior
Outline

- Controller for single inverter
- Conditions for synchronization
- Single-phase laboratory-scale prototype
- Three-phase microgrid controllers with high PV penetration
- Vision and future work
Nonlinear Oscillator

- Control each inverter to emulate a nonlinear oscillator
- Sinusoidal output voltage at resonant frequency of ω_{osc}
- Nonlinear current source $g(v)$ with gain given by $\sigma = |g'(v)|$

VOC subsumes Droop

VOC stabilizes arbitrary waveforms to sinusoidal steady state

Droop control only acts on sinusoidal steady state
Synchronization

- Robust
- Resilient
- Modular

Resistive Load

Startup

[Diagram of a resistive load system with voltage sources and current measurements]
Resistive Load

Inverter removal

Inverter addition
Resistive Load

Load step down

Load step up
Resistive Load

2:2:1 Load sharing inverter addition

2:2:1 Load sharing inverter removal
Rectifier Load

Startup

Diagram:
Rectifier Load

Inverter addition

Inverter removal
Three-phase controller

45 kW Microgrid

Inverter 1

Inverter 2

Inverter 3
Varying Irradiance

\[G = 1 \frac{kW}{m^2} \quad G = 0.5 \frac{kW}{m^2} \quad G = 1 \frac{kW}{m^2} \]
Varying Load

\[\Delta P_{\text{load}} = -5 \text{ kW} \quad \Delta P_{\text{load}} = +5 \text{ kW} \]
Summary

- New paradigm for inverter control
 - Synchronization of coupled nonlinear oscillators
 - Leverage advances in nonlinear systems theory

- Ensuing **Self-organizing Microgrid**
 - **Robust:** load independent
 - **Resilient:** no communication
 - **Modular:** seamlessly connect/disconnect
Questions?

Sairaj Dhople

e-mail sdhople@umn.edu
tel (612)624-8837