Review

Analyzing the coordinated gene network underlying temperature-dependent sex determination in reptiles

Christina M. Shoemaker, David Crews*

Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78705, United States

ARTICLE INFO

Article history:
Available online 30 October 2008

Keywords:
Temperature
Sex determination
Gonad
Reptile
Development

ABSTRACT

Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research.

© 2008 Elsevier Ltd. All rights reserved.

Abbreviations: MPT, male-producing temperature; FPT, female-producing temperature; TSD, temperature-dependent sex determination; GD, genotypic sex determination; ESD, environmental sex determination; TSP, temperature-sensitive period; AKG, adrenal-kidney-gonad; GAM, gonad-adrenal-mesonephros; MIS, Mullerian-inhibiting substance; Dmrt1, doublesex mab3 related transcription factor 1; Sry, sex-determining region of the Y chromosome; Sox9, Sox8 and Fgf9; Sox8, and Fgf9; Sox9, Sox8, and Fgf9; Sox9

Contents

1. Introduction

1.1. Species with TSD: who to study?

1.2. A common vernacular

1.2.1. Sf1

1.2.2. Wt1

2. Analysis of candidate genes putatively involved in temperature-dependent sex determination

2.1. Formation of the bipotential gonad

2.1.1. Sox9, Sox8 and Fgf9

2.1.2. Wt1

2.2. Testis-determining pathway

2.2.1. Sox9, Sox8 and Fgf9

2.2.2. Mis

2.2.3. Dmrt1

2.3. Intersecting pathways

2.3.1. Dax1

2.3.2. Wnt4

2.4. Ovary-determining pathway

2.4.1. FoxL2

2.4.2. Rspo1

3. Conclusion

Acknowledgements

References

E-mail address: crews@mail.utexas.edu (D. Crews).

1084-9521/S – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.semcdb.2008.10.010
1. Introduction

Vertebrates exhibit a dazzling array of sex-determining mechanisms that can generally be classified as belonging to one of two categories: genotypic sex determination (GSD) and environmental sex determination (ESD). Gonochoristic vertebrate species exhibiting genotypic sex determination utilize a heritable genetic element that initially directs the gonad down one of two sexual trajectories. In contrast, the sex-determining factor in organisms with ESD is derived from the physical or biotic environment [1,2]. Crocodilians, tuataras, many turtles and some lizard species exhibit a particular mode of ESD known as temperature-dependent sex determination (TSD), in which the incubation temperature of the developing embryo directs sexual fate. First documented by Charnier [3], species with TSD are sensitive to the action of temperature during a specific window of development known as the temperature-sensitive period (TSP) (for review see [1]). It is thought that species with TSD commonly lack heteromorphic sex chromosomes, although there is evidence of the co-existence of GSD and TSD mechanisms within particular lizard species [4], as occurs in some fish [5,6].

Downstream of the action of either a genetic or an environmental sex-determining trigger lies a complex network of molecular interactions and cellular behaviors leading to the formation of an ovary or a testis. This has best been studied in mammals and birds, lending much insight into both the process of gonadogenesis in GSD organisms as well as points of therapeutic intervention in a variety of human sexual development disorders (for review see [7–11]). As information concerning the genetic players of GSD has blossomed, investigators have become curious if these networks are conserved in other types of sex-determining mechanisms. Studies investigating the molecules underlying TSD began appearing in the mid-1990s and have since become a field of their own (for review see [12–14]). It is an important line of research because a comparative approach informs our understanding of the evolution of signaling pathways, molecular function and interactions and cellular behaviors across diverse taxa.

It is useful to emphasize that all development occurs within a contextual environment, be it at the level of neighboring cells, adjacent tissues, or external surroundings. Organisms with TSD offer a unique system in which to study the interplay between environment and development. Simply by shifting the incubation temperature of the egg during the temperature-sensitive period, one can re-set embryonic gonadogenesis. Full sex-reversal is caused by changing the embryonic environment, and this ability offers an opportunity to study many aspects of organogenesis including cell migration, fate choice, differentiation, and cell–cell signaling.

1.1. Species with TSD: who to study?

The use of nontraditional model systems is both a blessing and a curse: we choose to study them for their insights into the similarities and differences between taxa, but this often results in new stumbling blocks. Working with non-model critters presents technological challenges, and experimental techniques must be re-optimized for each particular species. Further, for many TSD species, seasonal breeding and relatively slow rates of development inherently means that experiments must often be optimized and completed over several seasons. Not only does this draw out the time needed for conclusive results to be gathered, it also begets complexity in the interpretation of data collected from multiple clutches, mothers, months within a season, and even years. Thus, it becomes important to ask which organisms initially make the most sense to utilize in studying the genetics underlying TSD.

Species with TSD are highly variable in their patterns of temperature-sensitivity. For many turtle species, low incubation temperatures during development lead to male embryos (male-producing temperature or MPT), whereas higher incubation temperatures lead to females (female-producing temperature or FPT) ([15–18], for review see [19]). In contrast, crocodiles and some turtle and lizard species exhibit a different mode of TSD in which extreme cool and warm temperatures produce females, while intermediate temperatures lead to males (for review see [19–21]). Studies in the laboratory of either pattern reveals that incubation at transitional or fluctuating temperatures produces clutches of eggs with varying sex ratios, and intersex embryos are uncommon.

While some conservation in the function of molecules involved in gonadogenesis exists across sex-determining mechanisms [22], it is also likely that some divergence has occurred as well. This is particularly true in terms of the initial triggers underlying sex determination. Investigating the temperature-sensing mechanism may unearth different molecular explanations for different TSD patterns. Further, divergence within molecular function may extend to the downstream network involved in sex determination and commitment, and possibly even within gonad differentiation.

The species currently being utilized in studies investigating the genetics of TSD are listed in Table 1, along with particular details of their TSD patterns. While we do not advocate the elimination of any particular species as unworthy of study, we do suggest that perhaps our efforts would best be concentrated on species chosen for particular criteria. These might include species that are most amenable to laboratory study due to size and availability, have previously garnered the most data, or are predicted to be most evolutionarily informative. The selection of a few key species to focus on would mean a more rapid accumulation of data and a clearer understanding of the TSD molecular network. It must be noted that understanding other aspects of TSD, including ecological, behavioral and evolutionary questions (for review see [23]), clearly do not fall within the same parameters as molecular studies, and should and do cover a much broader range of taxa.

1.2. A common vernacular

In the deceptively simple statement “sex is determined” lies a range of meaning. Plausible interpretations include that the cells of the gonad have begun expressing sex-specific markers, that some individual embryos at this point are no longer sex-reversible, or that all embryos at this point are no longer sex-reversible. This confusion is problematic, and thus a possible way of distinguishing between critical events in the timeline of gonadogenesis in organisms with TSD is presented in Fig. 1 (text contained in center gray bar). Initially, during the formation of the urogenital ridge and the bipotential gonad, individuals of TSD species are equipotent in their ability to become either sex. Temperature acts on this bipotential gonad, perhaps cumulatively, via target temperature-sensing molecule(s), and thus molecular differentiation begins as the temperature-sensitive period opens. Molecular differentiation continues as sex-specific pathways begin to be expressed, directing the gonad towards its eventual sexual fate. Sex becomes “determined”, or fated, such that if nothing perturbs the system, the gonad will continue in the developmental trajectory it has begun. At this point, gonads at different temperatures are no longer equal, but the TSP window remains open and sex is still reversible. Next, morphological differentiation begins as cells adopt different fates and reorganize, forming new, sex-specific structures within the gonad. Thus, molecular differentiation precedes morphological differentiation. Subsequently, the TSP window closes, at which point sex is “committed” and is irreversible. Sex-specific morphological
Table 1
Organisms historically used in studies examining the molecular network underlying temperature-dependent sex determination.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pattern of TSD</th>
<th>Temperature to produce a single-sex clutch&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Critical stages in embryonic gonadal development</th>
<th>Molecular studies references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-eared slider turtle (Trachemys scripta)</td>
<td>MPT (26 °C) FPT (31 °C)</td>
<td>0 by 15</td>
<td>15–20 15–19</td>
<td>[17,125,126] [41,42,43,44,54,57,58,77,31,89,93,98,99,114,123]</td>
</tr>
<tr>
<td>American alligator (Alligator mississippiensis)</td>
<td>MPT (32.5–33 °C) FPT (30 or 35 °C)</td>
<td>0 12/13 by st 20</td>
<td>21–24 21/22 22/23</td>
<td>[20,127–130] [47,55,76,91,92]</td>
</tr>
<tr>
<td>Olive Ridley sea turtle (Lepidochelys olivacea)</td>
<td>MPT (26–27.5 °C) FPT (32–33 °C)</td>
<td>0 12–13 21–23</td>
<td>20–23 24–27 (Days 20–27 for both temps) 26/27 31</td>
<td>[18,131–133] [85,86,87,88]</td>
</tr>
<tr>
<td>Painted turtle (Chrysemys picta)</td>
<td>MPT (25 °C) FPT (30.5 °C)</td>
<td>0</td>
<td>16–22</td>
<td>[16,126,141] [45,56,111]</td>
</tr>
<tr>
<td>Snapping turtle (Chelydra serpentina)</td>
<td>MPT (23–27 °C, 99%) FPT (20 °C,&gt;29.5 °C)</td>
<td>0</td>
<td>14–19</td>
<td>[126,134–137] [46]</td>
</tr>
<tr>
<td>Leopard gecko (Eublepharis macularius)</td>
<td>MPT (31–33 °C, 90%) FPT (23–28 or 34 °C)</td>
<td>30</td>
<td>32–37</td>
<td>[1,138–140] [90]</td>
</tr>
</tbody>
</table>

<sup>a</sup> These temperatures are thought to produce 100% of the given sex under laboratory conditions, except where indicated.

<sup>b</sup> Temperature-sensitive period is defined as the period during which sex can be reversed in some individuals when a group of eggs are temperature-shifted.
Fig. 1. Genetic events underlying gonad determination and differentiation in GSD mammals and TSD reptiles. A model of the molecular network underlying mammalian genetic sex determination is given in comparison to species with TSD. It is important to note that within the model, gene names in the mammalian network represent known dimorphic function, while in the reptilian network represent sex-specific gene expression. Solid lines imply direct regulatory relationships while dashed lines imply indirect or undescribed relationships. Some parts of the model have been shown conclusively, while others are supported by evidence. Developmental time proceeds from left to right. Stages of gonad development are described in the middle of the figure (gray box), and lines extending from this box attempt to align important gonad events across sex and sex-determining mechanism. It is notable that other GSD species, such as chick, may have divergent timing of events and function of various factors. The mammalian GSD network was selected to provide a framework against which to compare TSD studies, and for other GSD species, the reader is referred to other recent reviews (see [12,13]).

differentiation continues and eventually results in a fully formed gonad.

While deviations from this generalized timeline exist, such as in Lepidochelys olivacea where the TSP window closes at MPT before morphological differentiation is observable [18], it provides a framework for discussion. An important distinction arises from this theoretical framework: most notably in organisms with TSD, sex determination does not equal final commitment to a sex. As studies investigating the molecular network underlying TSD progress and gene function are elucidated, scientists must take care when specifying particular steps of the pathway.

2. Analysis of candidate genes putatively involved in temperature-dependent sex determination

The development of a vertebrate gonad can be thought of in two phases: the initial construction of an organ from which a variety of outcomes are possible, and the subsequent narrowing of these possibilities into one particular fate. Specifically, this translates to (a) the formation of an equipotent urogenital ridge and its successor, the bipotential gonad, and (b) the molecular and morphological differentiation that determines gonadal sex and results in a fully formed testis or ovary. The analysis of the molecular network underlying TSD that follows is broken down into these processes, with candidate genes being placed within a certain phase or sex-specific trajectory based on information from both GSD and TSD species. However, because the actual role(s) of these gene products in TSD remains unclear, their placement within these categories is merely parsimonious, and certainly will not prove to be correct in all cases. The level of convergence that exists across phyla in the function of these molecular players remains to be determined.

As previously described, various species have been used in molecular studies of TSD, and the timing of the TSP window is different across species. In the discussion that follows, particular stages are detailed so that comparisons across species can be made. The reader is referred to Table 1 for further clarification, and to place these stages within the various steps of gonad development. True species-specific differences in expression patterns are found in some of the following studies. However, it is likely that differences in the techniques utilized to assay expression, the tissues used, the varying staging criteria and the actual stages examined also contribute to variation seen within the data. Interpreting the differences in these results continues to be a challenge in piecing together the molecular network underlying TSD.

2.1. Formation of the bipotential gonad

In mammals, the formation of the urogenital ridge and subsequent bipotential gonad from underlying mesonephric and coelomic epithelial tissues utilizes several factors, including Sf1, Wt1, Emx2, Lhx9, and M33 (for review see [8,11]). Only two of these, Sf1 and Wt1, have been examined thus far in organisms with TSD. Steroidogenic factor 1 (Sf1, also known as Ad4BP and Nr5a1) is an orphan nuclear receptor that regulates transcription of many downstream genes, including several steroidogenic enzymes (for review see [24]). In early gonadogenesis, it appears to modulate cell proliferation and prevent apoptosis in the forming bipotential gonad in both sexes [25]. It also plays several later testis-specific roles: in concert with Sry (Sex-determining region of the Y chromosome) it appears to upregulate a specific enhancer element of Sox9 (Sry-like HMG-box containing transcription factor 9) [26], and in con-
Subsequently, in at least two turtle species, its expression is consistent with a conserved role in cell proliferation or apoptosis [37–39]. Thus, in mammals, \( Sf1 \) and \( Wt1 \) both play an early non-sex-specific function in bipotential gonad formation as well as later testis-specific roles, and are good candidates to examine for function across sex-determining mechanisms.

**2.1.2. \( Wt1 \)**

\( Wt1 \) expression has been examined in three species of turtle and the American alligator. In all cases, \( Sf1 \) transcripts are detected throughout the bipotential gonad in the earliest stages examined, as well as during the TSP and differentiation [40–46]. This expression may indicate that a function for \( Sf1 \) in the formation of the gonad has been retained across sex-determining mechanisms.

However, quantification of transcript levels between the sexes gives differing results across species. In the red-eared slider turtle, *Trachemys scripta*, significantly greater expression at MPT occurs in isolated gonadal tissue throughout gonadogenesis (stages 15–23) [41–43]. In contrast, expression in the painted turtle, *Chrysemys picta*, in combined adrenal-kidney-gonad (AKG) complexes is monomorphic at all stages examined (stages 9–22) except at one stage prior to the TSP (stage 12) during which expression is higher at MPT [44]. This generally monomorphic expression pattern may be due to the well-described masking effect that occurs when stereoidrogenic adrenal tissue, known to express \( Sf1 \) in mouse [47,48], is included in the expression analysis of the AKG (see [49–51]). In *Chelydra serpentina*, the snapping turtle, expression levels are monomorphic between MPT gonads and MPT → FPT shifted gonads (FPT gonads were not studied), except at one stage (5 days post-shift), where \( Sf1 \) interestingly rose in response to FPT [45]. Similarly, in the American alligator, *Alligator mississippiensis*, levels of expression appear qualitatively higher in FPT gonads at the close of the TSP (stages 23–25) [46]. While some of these differences may be due to true species-specific differences in \( Sf1 \) expression, some are likely confounds of the techniques and tissues utilized.

Localization of \( Sf1 \) transcript in the cells of the *T. scripta* gonad has been described by in situ hybridization. \( Sf1 \) mRNA is initially spread throughout the bipotential gonad early in the TSP at both MPT and FPT (stage 15); at MPT, it subsequently becomes localized first in circular structures, possibly surrounding germ cells (stage 17), and then in testis-specific sex cords (stages 19, 23) [43]. At FPT, \( Sf1 \) expression decreases and becomes more diffuse throughout the medullary region as development progresses (stages 17–23). Furthermore, shifting eggs from MPT → FPT or FPT → MPT during the TSP causes a decrease or increase, respectively, in gonadal levels of \( Sf1 \) expression, as well as the expected change in the localization of transcripts within the developing gonad [42,43]. Effects of estrogen and aromatase inhibitor treatment on \( Sf1 \) expression were also investigated in the slider turtle and are discussed in depth in another review in this issue [43,52].

Differing results from these studies in the timing of sex-specific \( Sf1 \) expression leaves room for interpretation of the possible roles of \( Sf1 \) in organisms with TSD. What is clear is that \( Sf1 \) initially is expressed strongly in the bipotential gonad of several species, consistent with a conserved role in cell proliferation or apoptosis in early gonad formation, similar to mammalian function. Subsequently, in at least two turtle species, its expression is temperature-responsive and may correlate to a function in the determination or development of the testis, similar to its several testis-specific roles in mouse.
its expression and is thought to contribute to Sertoli cell differentiation [65–67]. Loss of Fgf9 leads to male-to-female sex reversal in some individuals, and it has been shown to play an antagonistic role together with Sox9 in apposition to the Wnt4 signaling pathway [67]. Subsequently, the coordinated action of Sox9 and Sf1 directly upregulates Mis (also known as Anti-Müllerian hormone, Amh) [29,30]. Mis is secreted by Sertoli cells in the developing testis and, via the specific receptor MisRl, causes the degradation of the Müllerian ducts, anlagen that otherwise develop into the uterus, cervix and fallopian tubes in mammalian females [68,69].

After sex has been determined in the mammalian testis, Dmr1 (Doublesex mab3 related transcription factor 1) function is critical to vertebrate testis differentiation [70,71]. It is one of the few genes found to have homologs involved in sex differentiation across widely diverse taxa, including Drosophila, C. elegans, and vertebrates, including human, mouse, turtles, birds, alligator, fish and lizards [72–79]. While it appears to play a more downstream role in testis differentiation in mammals [80], it has been proposed to be a master sex-determining gene (i.e., a non-mammalian equivalent of Sry) in both chicken (Gallus gallus) and medaka (Oryzias latipes) [77,78,81,82], although further studies are needed to confirm this role (e.g., [83]).

2.2.1. Sox9, Sox8 and Fgf9

The ability of Sox9 to “replace” the action of Sry in mammals made it an obvious candidate for a critical role upstream in testis development in organisms with TSD as well. Studies in three species of turtles and the leopard gecko show similar Sox9 expression patterns: expression is detectable in both sexes early in gonad development and then becomes restricted to the developing testis during the end of the temperature-sensitive period. In slight contrast, expression in the alligator gonad is undetectable in either sex development and then becomes restricted to the developing testis at the end of the TSP.

An elegant set of studies in the sea turtle, L. olivacea, demonstrates the expression pattern and temperature-response of Sox9 in the developing gonad [84–86]. In this species, the TSP lasts for 8 days during development, corresponding to stages 20–23 at MPT and to stages 24–27 at FPT [18]. Expression analyses by RT-PCR demonstrate Sox9 is present early in developing gonads at both MPT and FPT (stages 23–25) and is later retained at MPT but is undetectable at FPT (stages 26, 27) [86,87]. Embryos incubated at MPT and then shifted to FPT for further incubation reveal that by 12 days post-shift, expression of Sox9 responds to the new incubation temperature and is downregulated [86]. Sox9 protein is detected in a similar pattern; early in development, Sox9 is found in primitive sex cords in both MPT and FPT gonads (stages 22, 24) and is then restricted to MPT (stage 26) [84]. Furthermore, when gonads are grown in vivo or cultured in vitro and exposed to sex-reversing temperature shifts in either direction (MPT → FPT and FPT → MPT), Sox9 protein levels change in the expected direction in response (decrease and increase, respectively) [85].

The data observed in L. olivacea is consistent with data from three other species with TSD. In T. scripta, initial expression analyses of AKG complexes showed monomorphic expression in both sexes throughout gonadogenesis (stages 15, 17, 20) [53,76]. However, subsequent studies revealed that this lack of sex-specificity is likely due to the inclusion of the strong Sox9 expression observed in dorsal metanephric tissue present in the AKG [50]. qPCR analysis on isolated gonads reveals Sox9 transcripts at both MPT and FPT early in the TSP (stages 16–17), followed by significantly higher expression of Sox9 at MPT at the close of the TSP and through differentiation (stages 19–23, Fig. 2A) [88]. In situ hybridization localizes Sox9 in the MPT gonad to preSertoli cells in developing sex cords (Fig. 2B) [50]. In C. serpentina, Sox9 is expressed at MPT throughout gonadogenesis and is downregulated in response to a shift to FPT [45]. Similarly, in the leopard gecko, Eublepharis macularius, Sox9 is detected by whole mount in situ hybridization during the TSP in both MPT and FPT gonads (stage 36) and is then restricted to MPT gonads at the end of the TSP (stages 37, 40) [89].

In contrast, Sox9 transcripts in the American alligator are not detected by RT-PCR in either sex early in the TSP (stages 20–23); expression is upregulated at MPT at the end of the TSP and during testis differentiation (stages 24–27) [90]. Coincidentally, the tissue sources used within this study varied; early in development the gonad is unable to be removed cleanly from underlying tissue and therefore gonad-adrenal-mesonephros (GAM, equivalent to AKG) must be analyzed (stages 20–23), while isolated gonad is possible later in development (stages 24–27). At MPT, Sox9 transcripts initially localize to faint expression in scattered cells (stages 23.5, 24), and subsequently to strong expression in developing sex cords (stage 25) [90,91].

In summary, these data suggest that Sox9 is not involved in the initial steps of sex determination, as is seen in mammals. However, its function may be critical for final commitment to a testicular fate. As described above, gonadal sex in organisms with TSD remains plastic until the end of the temperature-sensitive period. Dimorphic expression of genes involved in commitment to a sexual fate would not be necessary in the developing gonad until the end of the TSP when the window of sex-reversibility is closing. From this perspective, the data from all examined species with TSD (five) are consistent with the hypothesis that Sox9 plays a role in the commitment of the bipotential gonad to a testicular fate.

Both Sox8 and Fgf9 expression have been examined in one TSD turtle species each. Sox8 was cloned and investigated in T. scripta [92], while Fgf9 was examined in C. serpentina [45]. Both genes are expressed at similar levels at both MPT and FPT throughout gonadogenesis, and future investigation may reveal their roles, if any, in gonadal development in organisms with TSD.

2.2.2. Mis

In organisms with TSD, Mis has been best studied in T. scripta. Expression analysis of both pooled AKG complexes and isolated gonads reveals higher expression at MPT than FPT early in the bipotential gonad and throughout gonadogenesis (stages 16–23) (Fig. 2C) [88,92]. In situ hybridization localizes transcripts to somatic cells within developing testicular sex cords (Fig. 2D) [50]. Further, Mis expression is rapidly downregulated in gonads shifted from MPT to FPT early in the TSP, suggesting the repression of a testis-specific function [88]. To our knowledge, the only other TSD organism in which Mis has been examined is the American alligator. In this species, dimorphic expression also appears early in gonad development in a few medullary cells at MPT and continues to increase throughout the TSP (stages 22–25), with no detectable specific expression at FPT [91].

Thus, gonadal mRNA expression of Mis in the alligator and turtle becomes upregulated in putative males prior to upregulation of Sox9, similar to the case in chicken [93,94]. This suggests a divergence from the relationship seen in mammals in which Sox9 initially upregulates Mis expression. In turtles, early Sox9 expression is detectable in both sexes from the beginning of the TSP. If a role for Sox9 in the early stages of sex determination in the turtle testis exists, it must be regulated at the protein level as is the case in mammals. In both mouse and human, Sox9 is localized to the nuclei of preSertoli cells in the testis, exerting transcriptional control over downstream genes, while in ovarian cells remains cytoplasmic and thus inactive as a transcription factor [95,96]. Future work should investigate whether a similar nuclear-cytoplasmic shuttling system is important in temperature-dependent sex determination in the turtle. However, what seems more likely from the data thus far is the
exciting possibility that Sox9 plays a role in the final commitment of a gonad to a testicular fate.

2.2.3. Dmrt1

In three species with TSD, male-specific expression of Dmrt1 is observed either early or late in the temperature-sensitive period, but its functional role remains unclear. In the American alligator, expression is initially detectable in urogenital ridges at both MPT and FPT (stages 20–22), and subsequently becomes higher at MPT during the end of the TSP (stages 23–25) [75]. In L. olivacea, expression was not examined early in the male TSP. It is initially detectable in both sexes (stages 23–25); after the TSP, expression increases at MPT (stages 25–31) and becomes undetectable at FPT (stages 26–31) [87]. In T. scripta, expression during the TSP in both AKG
sex-specific roles during gonadogenesis. In the ovary, via Follistatin signaling has also been implicated in the development of the mammary reproductive system in both sexes (for review see [105]). Together, these data strongly implicate the involvement of Dmrt1 in testis formation and reveal a sensitivity to both temperature and estrogen, although not necessarily a direct one. Dmrt1 still holds the captivating possibility of being a master sex-determining gene in several GSD species, and may possibly be directly regulated by temperature in TSD species.

2.2. Intersecting pathways

Several factors have been shown to play complex roles in the development of both the mammalian testis and the ovary, including Dax1 and Wnt4. Differing functions of the same molecule can be regulated by the timing and localization of expression, the presence/absence of other co-regulators, and the presence/absence of activators/repressors of the molecules themselves. The function of the nuclear receptor Dax1 (Dosage-sensitive sex reversal, Adrenal hypoplasia congenital on the X chromosome 1, also known as Nr0b1 and Abch) is unique in that the otherwise highly conserved DNA-binding domain has been replaced in Dax1 by a protein binding domain thought to bind other nuclear receptors (see [8]). Understanding its role in gonadogenesis in mammals has been complicated over the past decade, first being theorized as a female-specific gene [99,100] and now being understood as critical to the development of the ovary in organisms with TSD are thoroughly discussed elsewhere (for review see [104]).

Wnt4 (Wingless-type MMTV integration site family member 4) signaling has also been implicated in the development of the mammalian reproductive system in both sexes (for review see [105]), mediating the initial formation of the Müllerian ducts and regulating the migration of steroidogenic mesonephric cells into the developing gonad [106,107]. However, it also seems to play several sex-specific roles during gonadogenesis. In the ovary, Wnt4 acts via Follistatin to prevent the formation of a testis-specific coelomic blood vessel [108]. Further, antagonistic action and/or competition to reach threshold levels between Wnt4 and Sox9/Fgf9 may tip the balance between female and male development [67]. In the testis, gonadal expression of Sox9, Mis, Dhh and Sf1 is decreased in Wnt4−/− XY mice and can be rescued by ectopic Wnt4, suggesting an active role for Wnt4 in testicular development [109]. Dax1 and Wnt4 expression in organisms with TSD is discussed below.

2.3.1. Dax1

In organisms with TSD, gonadal Dax1 is expressed at similar levels between the sexes in four species of turtle and the American alligator. Through developmental time this expression either decreases significantly (T. scripta), decreases slightly and then dramatically (L. olivacea), increases slightly (A. mississippiensis, C. picta), or does not change (C. serpentina) [45,46,87,88,110]. It remains to be seen what each of these timing-correlated changes mean at the functional level. Interestingly, expression in C. serpentina was correlated to clutch, and hatching ovaries contained twice the level of Dax1 as hatching testes [45]. In situ hybridization reveals localization of Dax1 expression in developing sex cords at both MPT and FPT, in the cortex of FPT gonads, and in cells of both the Müllerian and Wolffian ducts [88].

The sexually monomorphic expression pattern of Dax1 in organisms with TSD is not surprising, as roles for Dax1 exist in both the developing testis and ovary of mammals. Further analysis of the function of Dax1 in TSD gonads is warranted, and due to the complexity observed in the role of Dax1 in mammalian systems, these studies may prove more complicated than unraveling other parts of the TSD network.

2.3.2. Wnt4

In organisms with TSD, Wnt4 has only been examined in the red-eared slider turtle, T. scripta. Analysis of isolated gonad tissue reveals similar expression levels at MPT and FPT during the TSP (stages 16–19), and a subsequent significant increase at FPT over MPT during ovarian differentiation (stages 21, 23) (Fig. 2E) [88]. In situ hybridization localizes this expression across the gonad of both sexes, with increased concentration of transcript in sex cords at MPT, in the cortical region at FPT, and in developing Müllerian ducts (Fig. 2F) [88]. Similar to Sox9, if Wnt4 plays a role in the commitment of the bipotent gonad to a sexual fate (rather than the earlier step of sex determination), its expression should be dimorphic near the close of the TSP. Indeed, our data are consistent with a possible role of this signaling molecule in governing ovarian development at the level of commitment to a sexual fate.

2.4. Ovary-determining pathway

The pathway underlying mammalian testicular determination and differentiation has been elucidated more clearly and quickly than that underlying ovarian development, and unfortunately this has been mimicked in studies of TSD as well. The critical roles of estrogen, its receptors, ERα and ERβ, and aromatase in the development of the ovary in organisms with TSD are thoroughly discussed by Ramsey and Crews in this issue [52]. Here, we discuss two genes involved in ovarian development in both GSD and TSD vertebrates, FoxL2 and the recently implicated Rspo1.

The transcription factor Forkhead box protein L2 (FoxL2) was first linked to gonad development by associations between FoxL2 point mutations and BPS syndrome, symptoms of which include gonadal dysgenesis and premature ovarian failure in humans [111,112]. FoxL2 is expressed in the developing ovary of mouse and chick embryos [113], and is involved in postnatal mammalian granulosa cell differentiation [114]. Recent studies have shown that double FoxL2/Wnt4 knockout mice exhibit female-to-male sex reversal, and have identified FoxL2 promoter elements that may be mechanistically responsible for this reversal [115,116].

The most recently discovered player in ovarian development is R-spondin1 (Rspo1), which, excitingly, is the first identified single gene to cause full female-to-male sex reversal when mutated in humans [117]. It is a signaling ligand that can regulate Wnt and β-catenin signaling pathways [118,119]. It appears that Rspo1, via activation of β-catenin, and reinforced by Wnt4 signaling, is required for mammalian ovary determination [120,121]. The discovery of this putatively sex-determining gene is a breakthrough in unraveling the intricacies of the signaling and transcription network that occurs in an XX gonad. It has thus been proposed that Rspo1 reinforces Wnt4 in its antagonism with Sox9/Fgf9, and a threshold amount of either within the bipotential gonad tips the
balance towards one developmental trajectory over the other, thus committing the bipotential organ to a sexual fate [7].

2.4.1. FoxL2

FoxL2 was first described in a TSD organism in *T. scripta*, where expression is present in AKG complexes at both temperatures early in the TSP (stage 15) and later becomes higher at FPT than at MPT (stages 17, 20) [113]. Subsequent analysis by qPCR on isolated gonads gave slightly different results: expression is similar at MPT and FPT early in the TSP (stages 16–17), and becomes significantly greater at FPT during the end of the TSP (stages 19–23) (Fig. 2E) [88]. In situ hybridization further localized FoxL2 transcript to cells in the developing ovarian cortex (Fig. 2F) [88]. Similarly, in the snapping turtle, *C. serpentina*, gonadal expression of FoxL2 was found to increase in response to a shift from MPT to FPT during the TSP, indicating temperature-sensitivity and suggesting a role for FoxL2 in ovarian development [45].

2.4.2. Rspo1

The latest addition to the set of sex determination players was also recently examined in *T. scripta*. In isolated gonad tissue, expression is significantly higher at FPT than at MPT early in the TSP and continues to become increasingly disparate between the sexes (stages 17–23) (Fig. 2E) [122]. Further, when embryos are shifted from MPT to FPT early in the TSP, expression of Rspo1 in the gonad is rapidly downregulated, consistent with the hypothesis that repression of an ovarian–specific function is necessary for testicular development [122]. This exciting result constitutes one of the earliest significant dimorphisms in expression level of an ovary-specific factor in organisms with TSD. It implicates a role for Rspo1 in ovarian development, as well as a responsiveness to temperature, and merits further investigation of Rspo1 as a critical candidate ovarian sex–determining gene.

3. Conclusion

As have been detailed above, descriptive studies analyzing mRNA expression patterns have been the most practically feasible place to begin investigating the involvement of candidate genes in temperature-dependent sex determination. Clearly, however, these studies can only take our understanding so far. We would do well to heed a lesson from *Drosophila* sex determination: presence of transcript does not necessarily mean a functional transcript, that the transcript is spliced consistently in different cellular environments, or that protein spliceoforms are functionally equivalent. Thus, interpretation of expression data, while worthwhile and critical to laying the foundation of future studies, must all be taken with a proverbial grain of salt.

What is required next are analyses of protein expression, localization, and most importantly, function, if we are to truly understand the hierarchical cascade of gene action underlying TSD, and any evolutionary relationship of these actions with GSD. Experiments that move analyses in nontraditional model systems away from descriptive studies and into functional analyses have already begun. In their exciting gonad explant organ culture studies, Merchant-Larios and colleagues have provided us with a system just waiting for the application of techniques used commonly in model systems to assess function [85]. Overexpression and knockdown techniques can be optimized for the application to *in vitro* gonads, opening the door to understanding both the sufficiency and necessity of these molecules in the development of the temperature-determined gonad. Further, both the Capel and Kuratani laboratories have undertaken studies examining cell–cell interactions and cellular behaviors using explant chimeras of turtle/mouse or turtle/chick tissues [123,124]. These creative applications of techniques used routinely in model systems must continue if we are to actually understand the roles of known candidate molecules or, most excitingly, uncover the direct targets of temperature in the developing gonad.

Understanding expression data from studies of organisms with TSD within a broader context has resulted in a discussion of the level of conservation and divergence in molecular expression and function, cellular behaviors, and tissue development across sex-determining mechanisms. Unfortunately, we cannot fully assess the relative importance of conserved or novel roles of common molecular players until we have better techniques to elucidate their function. For certain there will be some conservation and some divergence as we expand studies of the molecular mechanisms of sex determination into nontraditional model systems. How much of each and what meaning we can derive from them remains to be seen. Regardless, these studies lend insight into the evolution of molecular action and, at a broader level, the evolution of developmental pathways.

Acknowledgements

The authors would like to thank Mary Ramsey for helpful comments during manuscript preparation and Kyle Jackson, Ryoei Yatsu, Joanna Queen and Kristen Berkstresser for previous contributions to the research summarized herein.

References


