UT Austin
Graduate Catalog
1999-2001



CONTENTS

CHAPTER 1
Graduate Study

CHAPTER 2
Admission and Registration

CHAPTER 3
Degree Requirements

CHAPTER 4
Fields of Study

CHAPTER 5
Members of Graduate Studies Committees

APPENDIX
Course Abbreviations
 

Chapter 4: Fields of Study

Aerospace Engineering


Degrees Offered

Master of Science in Engineering
Doctor of Philosophy

Areas of Study and Facilities

The concentrations for graduate work in aerospace engineering are aerothermodynamics and fluid mechanics; solids, structures, and materials; structural dynamics; guidance and control; orbital mechanics; and aerospace design. A brief description of each concentration and the experimental facilities available is given below.

Aerothermodynamics and fluid mechanics. This concentration involves study and research in experimental, theoretical, and computational aerodynamics, gas dynamics, heat transfer, and combustion. Research is presently being conducted in computational fluid dynamics, shock-boundary layer interactions, compressible shear layers, nonequilibrium and rarefied gas flows, applications of laser diagnostics, and nonlinear flow interactions. Facilities include Mach 3 and Mach 5 blowdown tunnels, shear layer and wake tunnels, a turbulent flame facility, lasers, a digital camera system, and a variety of high-speed digital data acquisition systems. In addition, a light gas gun for the acceleration of projectiles up to five kilometers per second is available for studies of chemically reacting and hypersonic flows. The excellent computational facilities include a variety of workstations and access to the Cray supercomputers.

Solids, structures, and materials. This concentration involves study and research in mechanics of composite materials, fracture mechanics, micromechanics of materials, constitutive equations, structural analysis, and structural stability. Experimental facilities include equipment for static structural testing; digital data acquisition equipment; uniaxial and biaxial materials-testing machines; custom loading devices; environmental chambers; microscopes; photomechanics facilities, composites processing equipment, and facilities for microstructural analysis. Computing facilities include workstations, supercomputers, and networks of workstations.

Structural dynamics. This concentration involves study and research in theoretical, computational, and experimental structural dynamics, including wave propagation. Included are aeroelasticity, linear and nonlinear structural system identification, modeling and control of flexible structures, multi-flexible-body dynamics, structural acoustics, and wave propagation in various media. Computational facilities include several workstations, and experimental facilities include actuators and sensors and several data-acquisition systems for structural system identification and control. Wind tunnel facilities are available for testing aeroelastic models.

Guidance and control. This concentration involves study and research in system theory, control theory, optimal control theory, approximation theory, estimation theory, and stochastic control theory and their application to the navigation, guidance, control, and flight mechanics of aerospace vehicles. Research is primarily analytical and numerical in nature, and excellent computational facilities are available for this purpose.

Satellite applications. This concentration involves study and research in the application of satellite techniques to a variety of problems, including active and passive satellite remote sensing for research in earth, ocean, atmospheric, and planetary science; satellite positioning, primarily using the Global Positioning System (GPS) for earth science research; and satellite tracking techniques for a variety of geophysical and geodetic studies, including the study of Earth's gravity field and rotation. Research is supported by a large database of satellite remote sensing measurements, a variety of computer workstations, GPS receivers, and image processing equipment.

Orbital mechanics. This concentration involves study and research in the applications of celestial mechanics, analytical dynamics, geophysics, numerical analysis, optimization theory, estimation theory, mathematics, and computer technology to the dynamic behavior of both natural and artificial bodies in the solar system. Research is supported by a large database of satellite measurements and a variety of computers, including a workstation cluster and a supercomputer.

Aerospace design. This concentration involves study and research in the application of all disciplines of aerospace engineering to the design of aerospace vehicles, missions, and related systems. Research is primarily applied in nature and involves the synthesis of information from all engineering disciplines, mathematics, the natural sciences, economics, project management, and public policy.

Graduate Studies Committee

The following faculty members served on the Graduate Studies Committee in the spring semester 1998-1999.
Eric B. BeckerStelios Kyriakides
Jeffrey K. BennighofKenneth M. Liechti
Robert H. BishopHans Mark
Roger A. BrouckeMark E. Mear
Graham F. CareyR. Steven Nerem
Lyle G. Clark Jr.J. Tinsley Oden
Noel T. ClemensJohn W. Porter
Roy R. Craig Jr.Gregory J. Rodin
Clint DawsonRichard A. Schapery
Leszek F. DemkowiczBob E. Schutz
David S. DollingJeff S. Shamma
Raynor L. DuncombeRonald O. Stearman
Wallace T. FowlerMorris Stern
David B. GoldsteinByron D. Tapley
David G. HullPhilip L. Varghese
John Kallinderis 

Admission Requirements

The prerequisite for graduate study in aerospace engineering is a bachelor's or master's degree in aerospace engineering or in a related field of engineering or science. Graduate study in orbital mechanics is possible for those with degrees in engineering, science, or mathematics.

Degree Requirements

Master of Science in Engineering. Students seeking the master's degree have three options. The thesis option requires thirty semester hours of coursework, of which six hours are given for the thesis course. The report option requires thirty-three semester hours of coursework, of which three hours are given for the report course. The option without thesis or report requires thirty-six semester hours of coursework. Regardless of the option chosen, a student is required to take six hours of supporting coursework outside the major. Students receiving financial aid through the sponsorship of the department are expected to choose the thesis option; however, those in aerospace design may choose the report option. Master's degree students may not count courses taken on the credit/no credit basis toward the degree. They are also limited in the number and level of business-related courses that may be counted.

The following is a template for the student beginning the MSE degree program in a fall semester. A student who follows this schedule will be considered to be making satisfactory progress toward the degree.

  1. Take courses during the fall and spring semesters and begin research.
  2. Complete research for thesis during the summer.
  3. Complete coursework in the second fall semester.
  4. Write thesis and graduate within one and one-half years.

Doctor of Philosophy. The PhD program consists of coursework, qualifying examinations, and the dissertation. Students who have master's degrees must complete at least twenty-four hours of coursework; those who enter the graduate program with bachelor's degrees must complete at least forty-eight hours of coursework.

To be admitted to candidacy for the Doctor of Philosophy degree, the student must pass both a written and an oral examination. The written examination is general in nature and covers subject matter studied through the first year of graduate work. The oral examination is in the student's specialty area and is conducted by a committee of faculty members whose interests are in that area. Students may not take courses on the credit/no credit basis until they have passed the written qualifying examination.

The following is a template for the student with an MSE degree who begins the doctoral degree program in a fall semester. A student who follows this schedule will be considered to be making satisfactory progress toward the degree.

  1. Take courses during the fall and spring semesters and begin research.
  2. Pass the written qualifying exam during the summer.
  3. Pass the oral qualifying exam soon after the written exam.
  4. Apply for candidacy before the end of the second fall semester.
  5. Continue research for the next two years.
  6. Write the dissertation and graduate within four and one-half years.

For More Information

Campus address: W. R. Woolrich Laboratories (WRW) 215D, phone (512) 471-7595, fax (512) 471-3788

Mailing address: Graduate Program in Aerospace Engineering, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712-1085

E-mail: gradprog@mail.ae.utexas.edu

URL: http://www.ae.utexas.edu/




Top of File   Graduate catalog
   


Aerospace engineering courses: ASE

Contents |  Chapter 1 |  Chapter 2 |  Chapter 3
Chapter 4 |  Chapter 5 |  Appendix


Related information

Catalogs | Course Schedules |  Academic Calendars
Office of Admissions



Office of the Registrar
University of Texas at Austin

2 August 1999. Registrar's Web Team
Comments to rgcat@utxdp.dp.utexas.edu