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Expected value. An expected value is the long-run average of a random variable X. More formally, the expected value E(X) is a weighted average of all X’s possible values. For a discrete variable, the weights are the probabilities of the X values, p(X), and the average is obtained by summation:
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For a continuous variable, the weights are the probability densities of the X values, f(X), and the average is obtained by integration:
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For certain distributions, the integral or sum fails to converge. In that case the expectation is undefined. Although undefined expectations are fairly rare, a well-known example occurs in connection with the Cauchy distribution, which is defined as the ratio of two standard normal variables.

To illustrate the calculations, consider the flipping of a fair coin. Let X be 1 if the coin comes up heads, and 0 if it comes up tails. Each value of X has the same probability, p(X=1)=p(X=0)=.5, so the expected value, using the discrete variable formula, is
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Whenever X is a dummy variable, as here, the expected value is the probability that X is 1. When X is an interval variable, the expected value is the population mean. 

Expectation is a linear operation: the expected value for a weighted sum of two random variables is just the weighted sum of the expectations,
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where a, b are the weights and X, Y are the variables. For example, suppose that X and Y are dummy variables associated with two fair coins, and each variable is 1 if its coin comes up heads. If both coins are tossed, the expected number of heads is

E(X)+E(Y)=.5+.5=1.

If two variables are independent, then the expectation of their product is the product of their expectations,
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but this relationship does not hold if the variables X and Y are not independent.

The expectation for a general function g of X is just a weighted average of the values of g(X). For a discrete variable X, the weights are the probabilities of the X values, p(X), and the average is obtained by summation:
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For a continuous variable X, the weights are the densities of the X values, f(X), and the average is obtained by integration:


[image: image7.wmf]ò

¥

-¥

=

=

x

x

f

x

g

X

g

E

)

(

)

(

))

(

(


These formulas extend in a straightforward way to the multivariate case where X and Y are vectors of random variables, and g is a function, possibly vector-valued, of the variable X.
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